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Abstract

Transfer learning uses high-level representations learned by a deep net as a starting
point for training on a related task. The ability of transfer learners to quickly achieve
high classification accuracy in a data-scarce setting makes them an essential part
of modern deep learning. Recent works have shown that robustness of deep nets
to small adversarial perturbations, while sometimes coming at the cost of accuracy
on the source task, often results in improved performance when transferring to
a new domain. In this report, we review the current literature on the effect of
adversarial training on learned representations and transfer accuracy, and argue
that the positive effects of robustness observed so far only occur when there
is a human-interpretable common structure between source and target task.
Specifically, we show empirically that there exist pathological downstream datasets
on which transfer accuracy is inversely correlated with pre-trained model robustness.
We also discuss the use of source dataset modification to produce better transfer
learners without the need for adversarial training.

1 Introduction.

Deep neural networks have recently shown astounding accuracy on a large range of classification tasks.
Training large networks, however, requires access both to plentiful data and to expensive computing
resources; in many situations training from scratch on a new task is simply not feasible. However, it has
been observed that training a large model on a ‘generic’ classification task such as ImageNet [Den+09]
and then applying a few further rounds of optimization on the new task at hand is often highly efficient.
In particular, starting training from a pre-trained generic model rather than a random initialization offers
three advantages: higher initial accuracy, faster training, and higher asymptotic accuracy [Don+14;
Yos+14]. These make transfer learning an extremely powerful technique in data-scarce settings.

A separate line of work [Bru+14] studies the resilience of neural networks to small adversarial input
perturbations. While this is often considered from a security perspective, it has recently been observed
[Sal+20; Utr+20] that such robustness tends to lead to better transfer learning performance when
re-training on new tasks, particularly when all but the last layer of weights are frozen and only the last
layer fine-tuned. This report is a discussion of the theoretical and empirical reasons for this behaviour,
and the limitations of its effect.

Contributions. As well as reviewing current ideas, we make the following original contributions:

1. A more general theoretical model of single-source representation transfer learning for
multi-label classification.

2. Demonstration of the existence of downstream datasets on which representation robustness
hinders transfer learning.

3. Proposing the use of source dataset modification techniques to produce improved transfer
learners without adversarial training.

Preprint. Work in progress.



2 Formal models of transfer learning
We start by presenting a simple model of the feature representations learned by a neural net. Consider
multi-label classification, where a sample of labelled examples (x,y)∈X×[k] is drawn from some
distribution D (here X is some d-dimensional input space, e.g. images of a certain size) and the
goal is to learn a classification function C : X → [k] that maximises the out-of-sample accuracy
E(x,y)∼D[1C(x)=y)]. ForC a neural net, we may express the prediction on input x as

C(x)=argmax
i=1,...,k

fC(x)i

where fC(x)=WR(x)+b∈Rk is the final-layer output ofC on x, i.e. an affine transformation of
the penultimate-layer activationsR(x)∈Rr.
Definition. The representation of an input x∈X under a neural netC is the vectorR(x)∈Rr.
Transfer learning aims to use a pre-trained neural netC as a starting point for performing some new,
unseen classification task. We normally assume the new task has the same input spaceX , but the number
of classes k′ may be different; in this case the output layer of the pre-trained network is first replaced
with a (randomly initialized) layer of length k′. There are two primary regimes used in transfer learning:

1. Re-training the entire model. The networkC may be fully re-trained on the target task, initializing
with the pre-learned weights rather than randomly. Here the network may in principle still learn
a completely different task (given enough data).

2. Representation transfer and fine-tuning. The alternative is to freeze the representation inC and
fine-tune only the final-layer weights on the new task, thereby training a linear classifier on the repre-
sentation learned for the source task. This paradigm is often referred to as representation learning.

Perhaps surprisingly, the second technique exhibits very good results on a wide array of tasks, and
it is this technique which we will focus on in this report.
2.1 Tractability of representation transfer
Data. When is representation transfer effective?1 Suppose there is a source (or upstream) classifica-
tion task T1 consisting of a distributionD1 overX×[k1] for some input spaceX and number of classes
k1∈N, and a target (or downstream) classification task T2 consisting of a distributionD2 overX×[k2]
for some k2∈N. Moreover, assume there is some true common representationR∗ :X →Rr so that

y=argmax
i=1,...,kt

(W ∗t R
∗(x)+b∗t +η)t ∀(x,y)∼Dt for t=1,2

where b∗t ∈Rkt ,W ∗t ∈Rr×kt are fixed ‘true’ weights and biases and η is a centered random noise
variable drawn independently for each x, y. (The stronger assumption that only the element of
W ∗1R

∗(x)+b∗1 orW ∗2R
∗(x)+b∗2 corresponding to the true class is positive is often realistic and use-

ful.) Intuitively, we assume that the source and target task are chosen to indeed have common structure.

Training. Samples (xt,1,yt,1),...,(xt,n1
,yt,nt

)∼Dt, t= 1,2 are provided and a model is trained
on the source dataset by minimising the in-sample risk:

φ̂,Ŵ1,b̂1 := argmin
φ∈Φ,W1∈Rr×k1 ,b1∈Rk1

1

n1

n1∑
i=1

L1(y1,i,W1φ(x1,i)+b1)

(for some loss functionL1 : [k1]×Rk1→R) where Φ is some class of functions (e.g. neural networks
of a particular architecture). The model is then fine-tuned to the target task by doing

Ŵ2,b̂2 := argmin
W2∈Rr×k2 ,b2∈Rk2

1

n2

n2∑
i=1

L2(y2,i,W2φ̂(x1,i)+b2)

(for some other loss functionL2 : [k2]×Rk2→R). Define then the excess risk

ER(φ̂,Ŵ2,b̂2) :=E(x,y)∼D2

[
L2(Ŵ2φ̂x1,i)+b̂2)−L2(W ∗2 φ(x1,i)+b∗2)

]
.

Bounding the excess risk. By arguing that R̂ and R̂∗ are close in some sense, one may prove
formal guarantees on ER(φ̂,Ŵ2,b̂2). Some progress has been made towards this, although none in
the multi-class classification setting presented here;2[Du+21] show in the regression setting that:

1Our modelling ideas are similar to some in the existing literature [Den+21; TJJ21; Du+21] but tailored more
closely to deep neural nets.
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Theorem. Under certain assumptions on the representation class Φ and the input distribution
D1 =D2, for large enough n1,n2 the excess risk satisfies with probability 1−δ for any δ

EW∗2 [ER(φ̂,Ŵ2,b̂2)]=σ2O

(G(FX (Φ))2+log 1
δ

n1
+
r+log 1

δ

n2

)
,

whereG(FX )) is the Gaussian width of the setFX of unit vectors in span([φ(X),φ′(X)]) (hereX is the
matrix of source-task training inputs) for some φ,φ′∈Φ and σ2 is the variance of the input noise terms.
Similar results were shown by [TJJ21] for when Φ is the class of linear representations, and the recent
work [Den+21] has adapted this analysis to the binary classification setting (for linear representations),

showing that for the loss functionL(y,ŷ)=−y ·ŷ the excess risk isO
(√

r+logn1

n2
+
√

r2d
n1

)
.

Effect of adversarial training. Deep neural nets have been shown to be highly sensitive to some
small perturbations in the input data [Bru+14]. A standard method of inducing robustness to such
adversarial perturbations is adversarial training, where the modified objective

1

n

n∑
i=1

max
‖δ‖q6ε

L(C(xi+δ),yi)

is minimised for some small ε (and normally q= 2 or∞) using projected gradient descent. While
multiple recent experiments ([Sal+20; Utr+20]) have observed that adversarial source training results
in better transfer learning on a number of downstream datasets (c.f. Section 4), only very recently
has any progress been made in showing this theoretically. In particular, [Den+21] show that:
Theorem (Informal). For Φ the class of linear representations, under additional data assumptions3

1. `2-adversarial training decreases the excess risk if the source classification tasks have sufficiently
varying signal-to-noise ratios (i.e. difficulties of classification) and are sufficiently diverse;

2. `∞-adversarial training decreases the excess risk if the source classification tasks have similar
signal-to-noise ratios but the input data lies in a low-dimensional subspace ofX .

Extending this result to non-linear representations (e.g. deep neural nets) remains an open problem.

3 Robustness and human-interpretability of representations
Let us discuss the representations themselves. Define a feature to be any function f :X →R; thus a
representationR consists of r learned features. For convenience we assume that all features we consider
are shifted and scaled to have zero mean and unit variance, and from now on we consider only binary
classification, with labels y∈{−1,1}. Loosely following [Ily+19], we make the following definitions:
Definition. A feature f is useful if it is correlated with the true label, i.e. if E(x,y)∼D[y ·f(x)]> 0.
We say f is ε-robust if it is correlated with the true label under adversarial perturbations of size ε,
i.e. E(x,y)∼D

[
inf‖δ‖6εy ·f(x+δ)

]
>0, and f is robust if it is ε-robust for some ε>0.

Note that robustness implies usefulness but not vice versa. In particular, there may be useful, non-robust
features which are correlated with the true label but which stop being useful under even very small
input perturbations. Crucially, these features still have good predictive power so will be learnt.

It is easy to see from this definition that applying `q-adversarial training with radius ε acts as a prior
for learning predominantly ε-robust features (under the q-norm). [Ily+19] show this empirically by
disentangling the robust from the non-robust features in a given dataset: given an input distribution
D they construct modified distributionsDrobust,Dantirobust such that: (a) the only useful features on
Drobust are those that are ε-robust onD, and (b) the only useful features onDantirobust are those that
are not robust onD. We adapt this technique for our own experiments in Section 4.

Human-interpretability. It has also been noted that: (a) robust features tend to be human-
interpretable, whereas non-robust features are not, and (b) images with similar robust learned
representations tend to be semantically similar, which is not observed for non-robust representations.
[Eng+19] show this empirically for robust and non-robust models trained on the Restricted ImageNet
dataset; we demonstrate the first point in the next section by visualising the features for a much wider
range of robustness levels than earlier works.

2Other works consider multiple source tasks, each binary (or single-dimensional); this is however
approximately equivalent due to the shared representation.

3Specifically, this is proven for multiple binary classification source tasks, with x(t)i =η
(t)
i +y

(t)
i Bat for each

task t and each datapoint i; ifB is orthogonal this implies that yi=sign(aTt BT (x
(t)
i −η(t)i )) as is standard.
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(a) ResNet18 features.

(b) ResNet50 features.

Figure 1: Random feature visualisations for ResNet18 and ResNet50
models pre-trained on ImageNet at a variety of robustness levels.

Figure 2: Examples of
the ‘anti-robust’ variants
of images in three of the
downstream datasets.

4 Our experiments

The tendency of robust nets to learn human-perceptible features leads to the conjecture that these nets are
better transfer learners. Indeed, a number of recent concurrent works made this observation; [Sal+20]
observe that robust ImageNet models yield improved accuracy on several downstream classification
tasks. [Utr+20] note the same behaviour, focusing more on comparing adversarial training techniques,
and show that robust models are biased towards recognising shapes over textures (like humans).

In this section we replicate the findings of [Sal+20] on new datasets and we demonstrate that: (a) the
human-interpretability of learned representations is strongly correlated with model robustness (we
show this in finer detail than previous works); (b) there exist downstream datasets on which pre-trained
model robustness induces poorer fine-tuning accuracy; and (c) removal of non-robust features from
the source dataset may be used to train better transfer learners without adversarial training. Our
experiments make use of several standard publicly-available software packages but all of the code
used for our experiments is entirely our own.

4.1 Visualising feature representations by robustness level

We take ResNet18 and ResNet50 models [He+16] adversarially pre-trained on ImageNet by [Sal+20]
with several different robustness levels and directly visualise their learned representations: for each
component i, we choose a Gaussian-randomly generated noise image x0 as a seed and solve the
optimization problem

xvis :=argmaxδR(x0+δ)i

using gradient descent started from x0. This gives us the input image xvis which approximately max-
imises this representation component. Figure 1 shows this for an arbitrary selection of components, and
clearly demonstrates that robustness directly controls the human-interpretability of the representation.

4.2 Anti-robust downstream tasks
In the ‘Standard’ plots in Figure 3 we show that pre-trained ImageNet model robustness correlates
strongly with fine-tuning accuracy on the CIFAR-10 [Kri09], MNIST [Den12], 17-class Oxford
flowers [NZ08], and ‘Ants vs Bees’ [Dut21] datasets, especially at the beginning of the fine-tuning
process (which is equivalent to a data-scarce setting).
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Figure 3: Transfer performance of ResNet18 ImageNet
models of different robustnesses on a variety of downstream
tasks and their antirobust variants. The pattern of interest is
clearly visible on the CIFAR-10 dataset; due to a lack of suf-
ficient time to fine-tune the antirobust dataset generation pro-
cess the results are less convincing for the other downstream
datasets, but we have included them for completeness.

(a) The ‘robust’ variant of a CIFAR-10
image.

(b) Transfer learning curves for ResNet18
models pre-trained on the standard
and robust variants of CIFAR-10 and
transferred to the Caltech101 dataset.

Figure 4

We next show that this is not always the case; that there exist downstream tasks where the only useful
features are those that are non-robust, and therefore for which robust source models are worse transfer
learners. Using the technique described in [Ily+19] we construct an anti-robust variant of each dataset
as follows: we take a standardly-trained deep netC and for each input-label pair (x,y) select a target
class t uniformly at random, and apply a targeted adversarial perturbation to x so that it is mistakenly
classified as t byC; that is, we choose

xadv :=argmin‖x′−x‖6εL(C(x′),t)

for some small ε using projected gradient descent. We then re-label this example with t, so that the
new training point is (xadv,t). Figure 2 shows a few examples of the training examples from generated
anti-robust variants of standard downstream datasets, and the ‘Antirobust’ plots in Figure 3 show the
fine-tuning behaviour of the pre-trained models on these modified downstream tasks. We see that
model robustness no longer improves downstream performance, often actively hindering it.a

4.3 Upstream dataset modification
Finally, we briefly explore the use of the dataset modification techniques from [Ily+19] for creating
improved source datasets on which we can train good transfer learners while avoiding the computational
expense of adversarial training. In particular, we take a pre-trained robust classifierC ′ and for each
source datapoint (x,y) choosingxrobust to minimise the representation distance‖R(x)−R(xrobust)‖2
using gradient descent started from a randomly chosen ImageNet seed image x0. Figure 4a shows an
example of one of these images and Figure 4b shows the transfer learning curves models trained on the
robust and standard versions of CIFAR-10 and fine-tuned on Caltech101 [FFP06]. While the difference
is subtle, these results show that source training on a modified dataset can have domain transfer benefits.

5 Discussion
These experiments shine an interesting light on the role of human-interpretable features in deep
learning. We have shown that in theory it is possible for learning robust, and therefore human-
interpretable, features to actually hinder performance on some downstream tasks. This could have
far-reaching applications: if we can find more meaningful examples of downstream tasks for which
human-perceptible representations fail we may start to develop a theory of what properties of learnt
representations are desirable other than robustness. One particular application could be to steganalysis,
which is a good example of a task that humans find difficult or impossible but neural networks have
been shown to solve without difficulty.
Another line of thought these experiments open is the possibility of more advanced data manipulation
techniques to create standard ‘teaching’ datasets that produce better transfer learners for a wider range
of downstream tasks than e.g. ImageNet itself. Curriculum design like this could be an important
part of training generalised AI further down the line.

aApologies for the small figures; I have tried to ensure the resolution is sufficient that they may be zoomed in on.5
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