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Abstract

The multi-armed bandit problem is a classic online learning scenario where an agent repeatedly

picks between several actions, receiving at each round a hitherto-unknown reward depending

on its choice. The agent’s goal is to minimize its regret relative to the best single action in the

long term. This is now a well-studied problem, with a number of successful algorithms in the

literature and with constantly-emerging applications ranging from medical trials and COVID-19

testing to viral marketing and portfolio optimization. But what if you can take more than one
action at each round and get the reward from the best one? This extension is natural in many

practical settings—particularly with the availability of parallel processing—but has received lit-

tle attention. In this work we propose a number of novel algorithms for this problem in various

contexts based on a generalization of ‘Follow the Perturbed Leader’. We provide theoretical guar-

antees on our algorithms’ performance relative to the best single action (unlike related works)

and corresponding computational lower bounds. Next, we show that our algorithms can be used

to improve on current methods in submodular function optimization. Finally, we study our al-

gorithms’ empirical performance on an online deep learning hyperparameter selection problem

based on the 2020 NeurIPS Black-Box Optimization Challenge, as well as in a number of synthetic

scenarios.
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Chapter 1

Introduction

Situations frequently arise in practice where a choice must repeatedly be made between several

alternatives—each time resulting in some observed outcome—and it is necessary to learn on the go
how to maximize long-term success. For instance, when conducting a clinical trial one may wish

to decide which treatment option to give each new participant based on current success rates;

when running a business one may wish every day to set new prices for your products; when

designing a lifelong learning agent one may wish to choose which of several learning methods

to apply to each new problem.
1

These situations are captured by the multi-armed bandit problem, in which an agent must at

each of T time-steps choose an action a from some �xed �nite set A , and this choice receives

some reward (or equivalently incurs some cost); the goal is to maximize the cumulative reward

over all T rounds (or minimize the cumulative cost). First formulated in the mid-twentieth cen-

tury [Rob52], the ubiquity of this problem has since generated consistent attention, with many

successful solutions having been proposed and analysed in the literature under a variety of as-

sumptions on the nature of the rewards/costs, which may be sampled from a distribution or

chosen by an adversary, and from both Bayesian and frequentist perspectives. More recently,

the wide applicability of this framework to modern data-rich settings has caused a resurgence of

interest, with both new theoretical approaches [Sli19] and new applications of classical bandit

algorithms [BRA20] featuring prominently at major conferences.

Indeed, multi-armed bandit algorithms have been subject to a plethora of generalizations and

adaptations. Some of these deal with varying decision structures: linear bandits allow each action

to be a vector inℝd , with the received reward some linear function of this decision [AK08; MB04];

combinatorial bandits allow actions within some subset of {0, 1}d [CBL12; BCB12]. Others handle

varying feedback regimes: does the algorithm see the rewards for all possible actions after each

round, some subset of them, or just the action it took? Still more tackle the addition of contextual
information available at each round [TM17]. Indeed, work exists in problem settings involving

many combinations of the above.

One interesting variant of this problem, however, has received little attention, despite its natural

applicability to a large class of practical scenarios. Suppose, as in the original bandit problem,

that an agent can choose from a �xed action set A , but that now it is given an action budget
B and can pick up to B separate actions to take together at each round; the agent receives the

1
All of these scenarios involve a trade-o� between exploration and exploitation: choose the option you think is

best at each stage and you may never discover better ones you haven’t tried yet, but spend the whole time trying out

new things and you’ll ruin your long-term performance.

1



largest reward from any of the individual actions it takes. Intuitively, now the agent must learn

how to guarantee that at least one of the B actions it picks will be good (a ‘fail-safe’ combination

of actions).

This scenario models the leveraging of additional resources at each round (i.e. so that more

than one action can be performed) to increase performance; three obvious ways such additional

resources may arise are given in Table 1.1. See Table 1.2 for a more detailed list of potential

applications of this maximum-of-rewards structure.

It is this problem variant—which we call the multitasking bandit problem—that we tackle in this

work.

1.1 Contributions and structure

Our main original contributions are as follows:

• We propose a new e�cient algorithm to solve the full feedback multitasking bandit prob-

lem and prove various regret bounds for this algorithm (Chapter 3).

• We adapt our algorithm to the partial feedback setting in various ways and prove regret

bounds for each, as well as considering a less e�cient version of our algorithm that com-

petes better in anticorrelated-reward settings (Chapter 4).

• We provide initial lower bounds on the regret achievable by any multitasking bandit algo-

rithm, which our full feedback algorithm can match asymptotically in |A | (Chapter 5).

• We use our algorithm to create a new hybrid version of an existing online submodular

function maximization algorithm, and we examine the performance of both on the multi-

tasking bandit problem (Chapter 6).

• We apply our algorithms empirically to an online hyperparameter optimization problem

based on the 2020 NeurIPS Black-Box Optimization Challenge [Tur+21] (Chapter 7).

• We empirically compare the various algorithms we’ve discussed in a number of synthetic-

reward environments (Chapter 8).

We start in Chapter 2 by providing a brief introduction to the classical multi-armed bandit prob-

lem and two bandit algorithms that we will refer to, and to close in Chapter 9 we discuss our

�ndings and possible research directions for the future.

1.2 Related work

Although what we call the multitasking bandit problem has not been considered before in this

exact form, several works have dealt with generalizations or variants of it, and we review these

brie�y here.

In the most relevant work, Streeter and Golovin [SG08] propose a greedy (1−e−1)-approximation

algorithm for an online submodular function maximization problem of which the multitasking

bandit problem is a special case. Their algorithm has regret guarantees relative to the best-in-

hindsight set of B actions; in our work we focus instead on regret bounds with respect to the

best-in-hindsight set of N actions for N < B, which better models the addition of extra resources

inherent in many of the applications just discussed. Indeed, our algorithms (a) have much smaller

regret in T than theirs for theN = 1 case we focus on, as well as in certain cases forN > 1, and (b)
often outperform theirs in practice, as explored later. We discuss their work further in Chapter 6

2



Table 1.1: Families of scenarios the multitasking bandit problem applies to.

• Parallel processing. If each action is not easily parallelizable but B processors are available for
computation, it makes sense to take B actions in parallel and use the results from the best one.

• Time availability. If there is some pre-determined time available for each round before moving
onto the next, and executing one action takes much less than the available time, it makes sense
to take as many actions as possible before the next round starts and use the results from the best
one.

• Trading off resources intentionally. Even if neither of the above apply, in many cases it may
still be beneficial to voluntarily spend more compute/time on a round than just one action needs
so as to increase the chances of success—especially if high performance at each round is more
important than, or of similar importance to, fast/efficient completion of all rounds. It is this sce-
nario that motivates much of the theoretical analysis in our work.

Table 1.2: Some applications of the multitasking bandit problem.

• Online algorithm portfolios: Arguably the most attractive application is to choosing between
multiple available algorithms/methods for completing each of a series of tasks. With the avail-
ability of parallel processing, or even without (as mentioned above), it may be desirable to try B
algorithms on each task instead of just one and take the best results. Some instances of this are:

– Hyperparameter optimization. Increasingly advanced algorithms are emerging for hyper-
parameter search when training deep learning models. In many cases no one algorithm is
best across all cases; we may want to on each of a series of learning tasks apply B different
hyperparameter selection algorithms and take the best hyperparameters found by any of
them. We apply our algorithms to this setting in Chapter 7.

– Reinforcement learning. Laroche and Feraud [LF17] applied bandit techniques to select-
ing one of several available reinforcement learning policies to apply on each episode of an
episodic task. In some situations it may be possible and appropriate to instead execute B
policies on each episode and lock in the results from the best one.

– Lifelong learning. Themost general and appealing version of this setting is in a generalized
learning agent which must tackle many different learning problems throughout its lifetime.
This agent may have a large repertoire of learning techniques it has acquired but finite
resources to apply to each problem, so it may want to be able to choose B of its methods
to try on each task.

• Network routing. One use of classical bandit algorithms is adaptive data routing [AK08], where
a router forwards packets to their destinations using varying network routes with the goal of min-
imizing time taken (and packet loss). We may wish to instead forward each packet using B routes
for redundancy.

• Advert placement. Another common use of bandit algorithms is to choose which of several ads
should be displayed on a website each time a user visits it, hoping to maximize clicks [Ava+21]. In
the restricted feedback setting where the algorithm only sees its overall maximum reward at each
round, the multitasking bandit problem models displaying B adverts and the user clicking on the
best one.

• Online bidding. A situation where an auctioneer repeatedly chooses B participants to bid for
an item and the item is sold to the highest bidder is modelled well by the multitasking bandit
problem.

3



(where we also propose a hybridization of their algorithm with ours that can improve on theirs in

the general submodular function setting), and we evaluate their algorithm and our modi�cation

of it empirically against ours in Chapters 7 and 8.

The multitasking bandit problem is also a special case of the combinatorial bandit problem, where

an algorithm chooses a bitstring from some X ⊆ {0, 1}d at each round and receives a reward

based on this choice: just set d ∶= |A | and X ∶=
{
(b1, … , bd ) ∈ {0, 1}d ∶ ∑d

i=1 bi 6 B
}

.
2

Several

works consider such combinatorial bandit problems where the overall reward is a linear function

of the chosen tuple [CBL12; BCBK12; ABL14], i.e. the sum of the relevant single-action rewards,

but in our case the reward function would be

reward(b1, … , bd ) ∶= max{r1b1, … , rdbd} (1.1)

for single-action rewards r1, … , rd , which is not linear.

There has been some work on combinatorial bandits with a general, non-linear reward func-

tion, but none quite applies to our problem. Combes et al. [Com+15], Kveton et al. [Kve+15],

Chen et al. [Che+18], and Chen, Wang, and Zhou [CWZ18] all consider versions in the stochastic
setting, where rewards are sampled i.i.d. from some distribution; the adversarial setting which

we are interested in in this work—where rewards may be chosen arbitrarily by an adversary—is

considerably more general and quite di�erent in nature. Of particular note, Chen et al. [Che+16]

propose an algorithm called ‘Stochastically Dominant Con�dence Bound’ that solves the combi-

natorial bandit problem with general reward functions and they apply it to a stochastic version

of the problem we consider in this work, which they note the importance of and call the K -MAX

bandit problem.
3

A recent follow-up work [HWC21] has tackled the adversarial setting of the

combinatorial bandit problem with a general reward function, but with a more restrictive feed-

back regime: only the overall calculated reward is revealed to the algorithm after each round, not

the method of calculation (in our case the single-action rewards).

1.3 Attribution and publication

The initial ideas for a number of algorithms, results and proofs in this thesis as well as assistance

with various details are due to my supervisor Thomas Orton; much of this work is the result of

collaboration between us, and a jointly-authored conference paper based in part on some of the

results in this thesis is currently under review.

1.4 Notation

Some standard notation used throughout the document is listed in Table 1.3.

2
So, for example, given |A | = 5 available actions and a budget B = 2, one possible choice would be (0, 0, 1, 0, 1),

corresponding to taking the third and �fth of the �ve available actions together.

3
They also compare their algorithm for the K -MAX bandit problem to Streeter and Golovin’s more general algo-

rithm, demonstrating theoretical superiority (arbitrary approximation accuracy) and a substantial empirical improve-

ment (but this was in the stochastic setting, which is orthogonal to ours.)

4



Table 1.3: Semantics, unless otherwise specified, of some frequently used notation (note that some
symbols not mentioned here have overloaded meanings in different proofs.)

Symbol Meaning

ℕ The set {1, …}, i.e. natural numbers excluding zero
[n] The set {1, … , n}
T ∈ ℕ Number of rounds in a bandit game
A Set of actions available
B ∈ ℕ Action budget
N ∈ ℕ Benchmark set size
t, s ∈ ℕ Round indices
i, j ∈ ℕ Action indices
Et Variously refers to events or algorithms
rt (a) ∈ [0, 1] Reward for action a ∈ A at round t ∈ [T ]
rt (S) Maximum rewardmaxa∈S rt (a) of action set S ⊆ A at round t ∈ [T ]
Rt (⋅) Cumulative reward∑t

s=1 rs(⋅) up to round t ∈ [T ] (by convention R0 = 0)
R⋆t (⋅) Cumulative reward∑t

s=0 rs(⋅) including a non-zero initial reward
pt (a) ∈ ℝ Random perturbation applied at round t ∈ [T ] for action a ∈ A
R̃t (a) Perturbed cumulative reward Rt (a) + pt+1(a) of action a ∈ A up to round t ∈ [T ]
r̂t (a) An estimated reward for action a ∈ A at round t ∈ [T ]
R̂t (a) Estimated cumulative reward∑t

s=1 r̂s(a) for action a ∈ A up to round t ∈ [T ]
a⋆ Best-in-hindsight single action argmaxa∈A RT (a)
S⋆N Best-in-hindsight fixed size-N action set argmaxS⊆A ∶|S|=N RT (S)
RN N -regret RT (S⋆N ) − ∑T

t=1 rt (St ) of a sequence of action sets (St )t∈[T ]
Ft The � -algebra generated by all observations and choices up to (and including) round t

5



Chapter 2

Background: Multi-Armed Bandits

We start with a very brief summary of some relevant classical bandit theory.

2.1 Overview

First introduced by Robbins [Rob52] in 1952 and named thus in reference to choosing between

an array of ‘one-armed bandit’ slot machines at a casino, the multi-armed bandit problem and its

variants have generated a large literature over the last seventy years. Formally, the basic problem

is as follows:
1

De�nition 2.1 (Multi-armed bandits). The multi-armed bandit problem (or bandit problem) is
de�ned as follows. Suppose you are playing a game consisting of T rounds. There is a �xed �nite
set A of actions at your disposal; at each round t ∈ [T ] you may select one action at ∈ A to take.
Before the game starts, an adversary picks a hidden reward

2 rt (a) ∈ [0, 1] associated with each
action a ∈ A at each round t ∈ [T ]; the reward received by the action you take is revealed after
your selection. The goal is to maximize your cumulative reward ∑T

t=1 rt (at ) over all T rounds.

A multitasking bandit algorithm (or just a bandit algorithm) is any algorithm that solves the
multi-armed bandit problem.

The version of the problem stated above uses what’s called bandit feedback, where you only see

the reward of the action you actually take at each round; in constrast, in the full feedback version

of the problem (often called the experts problem) you get to see the reward of every possible

action after you make each choice.

Write Rt (a) ∶= ∑t
s=1 rs(a) for the cumulative reward of an action a ∈ A . The most common way

to talk about the performance of a bandit algorithm is how low its regret is:
3

De�nition 2.2 (Regret). The 1-regret, or just regret, of a bandit algorithm that takes actions
a1, … , aT is

R1 ∶= RT (a⋆) −
T
∑
t=1

rt (at ), (2.1)

1
The literature often refers to actions as arms and frames the problem as minimizing costs ct (a) ∶= 1− rt (a) instead

of maximizing rewards.

2
The restriction rt (a) ∈ [0, 1] is not necessary but we assume it throughout our work.

3
There are many other possible notions of regret, some of which we’ll use in the more general problem settings

we consider later in this work.
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where a⋆ = argmaxa∈A RT (a).

An algorithm that always receives reward 0 at every round would incur worst-case regret R1 = T ,

so the aim is normally to produce algorithms with regret guaranteed to be sublinear in T .

2.2 WMR and Exp3

One algorithm proposed by Littlestone and Warmuth [LW94] for the full feedback bandit prob-

lem is called ‘Randomized Weighted Majority’ (Algorithm 1), sometimes referred to as Hedge.4

Intuitively, at each round WMR decreases the chance of picking an action by an factor that’s

greater the smaller its reward at that round was, so in the long run actions that frequently get

large rewards will have the highest probability of being chosen.

Algorithm 1: WMR

Input: parameter " ∈ (0, 1/2), available actions A , number of rounds T , rewards
(rt (a))a∈A revealed after each round t .

Output: actions a1, … , aT .

Initialize weights w1(a) ∶= 1 for each a ∈ A . Then for each round t ∈ [T ]:
1. Define qt (a) ∶= wt (a)

∑a′∈A wt (a′) for each action a ∈ A .
2. Sample an action at from distribution (qt (a))a∈A .
3. Observe rewards (rt (a))a∈A .
4. Update the weights as wt+1(a) ∶= wt (a) ⋅ (1 − ")1−rt (a) for each a.

It is shown that this algorithm satis�es the following worst-case regret bound:

Proposition 2.3. WMR with parameter " =
√
ln |A |/T incurs expected regret

E[R1] = O(
√
T log |A |). (2.2)

In the bandit feedback setting, some kind of estimate must be made of the unobserved rewards

at each round; the problem is how to make these best to balance exploration (trying actions you

don’t know much about) with exploitation (taking actions you think are good). A generalization

of WMR that handles bandit feedback called Exp3, for exploration, exploitation, exponentiation,

was proposed in a seminal 2002 paper [Aue+02]—see Algorithm 2. This algorithm satis�es the

following regret bound:

Proposition 2.4. WMR with parameters 
 < 1/2T and " =
√
(1 − 
) ln |A |/3|A |T incurs ex-

pected regret
E[R1] = O(

√
T |A | log |A |). (2.4)

4
In the stochastic case where rewards for each action are drawn i.i.d. from some distribution at each round, deter-

ministic bandit algorithms may do well, but in the adversarial case we consider where no such assumption applies, it

is easy to see that some amount of randomization is necessary to be able to get a sublinear worst-case bound on the

regret.
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Algorithm 2: Exp3

Input: parameter " ∈ (0, 1/2), exploration probability 
 ∈ (0, 1/2), available actions
A , number of rounds T , reward rt (at ) revealed after each round t only for the
action taken.

Output: actions a1, … , aT .

For each round t ∈ [T ]:
1. CallWMR and receive the probability distribution (qt (a))a∈A .
2. Sample an action a′t from this distribution.
3. With probability 1−
 take action at ∶= a′t , otherwise pick an action at ∈ A

uniformly at random to take.
4. Observe the reward reward rt (at ) for the chosen action.
5. Define estimated rewards

r̂t (a) ∶=

{
rt (at )


 /|A |+(1−
)qt (a) if a = at ,
0 otherwise

(2.3)

for each a ∈ A .
6. Return the estimated rewards (r̂t (a))a∈A toWMR.

2.3 Follow the Perturbed Leader

Another approach to the full feedback bandit problem was rediscovered
5

by Kalai and Vempala

[KV05]. Motivated by the natural idea of taking the action that’s done best overall so far, but

also the necessity of introducing randomization to compete with a worst-case adversary, their

algorithm is called ‘Follow the Perturbed Leader’ (Algorithm 3).

They proved that FPL achieves the same asymptotic regret bound as WMR of O(
√
T log |A |) in

expectation when run with perturbation rate " =
√
ln |A |/T .

6

FPL has since been adapted to the partial feedback setting in a couple of ways, and we use these

for inspiration later.

2.4 Some recent applications

There have been many applications of bandit algorithms in the literature, especially in the last

decade. A good survey is provided by Boune�ouf, Rish, and Aggarwal [BRA20]. Some examples

are given in Table 2.1.

5
It was proposed initially by Hannan [Han57] in a di�erent context and with a more complex analysis.

6
It is the technique they used for this proof which we will generalize later in this work.
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Algorithm 3: FPL

Input: perturbation rate " > 0, available actions A , number of rounds T , rewards
(rt (a))a∈A revealed after each round t .

Output: actions a1, … , aT .

For each round t ∈ [T ]:
1. Sample independent exponential perturbations pt (a) ∼ Exp(") for each

action a ∈ A .
2. Define the perturbed cumulative reward R̃t−1(a) ∶= Rt−1(a) + pt (a) for

each action a ∈ A .
3. Pick at ∶= argmaxa∈A R̃t−1(a) to be the action with the largest perturbed

cumulative reward.
4. Observe the rewards (rt (a))a∈A (and update Rt (a) ∶= Rt−1(a) + rt (a) for

each a).

Table 2.1: Some recent applications of bandit algorithms.

• Durand et al. [Dur+18] apply bandit techniques to adaptive allocation for data collection
in clinical trials, gathering more data dynamically for promising treatments.

• Huo and Fu [HF17] incorporate risk-awareness into the classical bandit setting to apply
bandit algorithms to online portfolio selection in financial markets.

• Kerkouche et al. [Ker+18] demonstrate the use of multi-armed bandit algorithms to opti-
mize the performance of long-rangewide area network technology by allowing each node
to select its communication parameters adaptively.

• One particularly recent and interesting application of bandit algorithms has been to
COVID-19 testing. In the summer of 2020, the Greek government for three months al-
located limited PCR tests at every port of entry using a Bayesian bandit algorithm; an
analysis showed that their algorithm detected up to 4 times more asymptomatic infected
travellers during peak times than simpler testing policies used by other nations would
have [Bas+21].
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Chapter 3

Multiple Actions: Generalizing
‘Follow the Perturbed Leader’

We turn now to our new generalized problem setting:

De�nition 3.1 (Multitasking bandits). The multitasking bandit problem is de�ned as follows.
Suppose you are playing a game consisting of T rounds.1 There is a �xed �nite set A of actions
at your disposal, and you are given an action budget B ∈ [|A |]; at each round t ∈ [T ] you may
select up to B actions a ∈ A to take at once, i.e. you may choose any set St ⊆ A s.t. |St | 6 B.
Before the game starts, an adversary picks a hidden reward rt (a) ∈ [0, 1] associated with each
action a ∈ A at each round t ∈ [T ]. The rewards received by each action you actually take are
revealed after your selection and you receive as your payo� the maximum rt (St ) ∶= maxa∈St rt (a)
of these rewards, i.e. you are rewarded for the best single action out of those you chose. The goal
is to maximize your cumulative reward (payo�) ∑T

t=1 rt (St ) over all T rounds.2

A multitasking bandit algorithm is any algorithm that solves the multitasking bandit problem.

How best to measure an algorithm’s performance is now less obvious—what benchmark should

we compare to? Writing Rt (⋅) ∶= ∑t
s=1 rs(⋅) for cumulative reward up to round t , let’s de�ne the

following family of regret functions:

De�nition 3.2 (N -regret). For any N ∈ [|A |], the N -regret incurred by a multitasking bandit
algorithm that chooses action sets S1, … , ST is

RN ∶= RT (S⋆N ) −
T
∑
t=1

rt (St ) (3.1)

where S⋆ ∶= maxS⊆|A |∶|S|=N RT (S) is the best �xed action set of size N .

For a multitasking bandit algorithm with budget B there are two obvious candidate regret no-

tions: the B-regret and the 1-regret. The former measures how well the algorithm does compared

to the best �xed use of the same resources; the latter rather captures the bene�t of adding the

additional resources and enables a more meaningful comparison to classical B = 1 bandit algo-

1
In practice the total number of rounds T may be unknown (or the game may run inde�nitely), in which case

simple adaptations to any algorithms can be made exactly as in the classical bandit setting—for example, by using the

doubling trick [BK18].

2
Note that in the case B = 1 this reduces to the classical multi-armed bandit setting discussed in Chapter 2.
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rithms. Motivated by the applications discussed in the introduction, we choose to focus primarily

on this second metric.

In this chapter we thus seek polynomial-time algorithms with asymptotically small 1-regret as a

function of T , |A | and also B. We will start with the full feedback case, a slightly simpler version

of the problem where after each round t the reward rt (a) for every action a ∈ A is revealed to

the algorithm. Later, in Chapter 4, we will consider variants of our algorithms that can deal with

the more general partial feedback setting de�ned above.
3

3.1 A new algorithm

We proceed by generalizing the ‘Follow the Perturbed Leader’ (FPL) algorithm from Chapter 2

to a full feedback multitasking bandit algorithm we call ‘Follow the Perturbed Multiple Leaders’

(FPML). Like FPL, FPML stochastically perturbs the cumulative rewards at each rounds, but it

then takes the top B actions by perturbed cumulative reward rather than just the top one. See

Algorithm 4.

Algorithm 4: FPML(")

Input: rate parameter " ∈ (0, ∞], available actions A , budget B ∈ [|A |], rewards
(rt (a))a∈A received after each round t ∈ [T ].

Output: action sets S1, … , ST all of size at most B.

For each t ∈ [T ]:
1. Independently draw exponential random perturbations pt (a) ∼ Exp(")

for each action a ∈ A , and define R̃t−1(a) ∶= Rt−1(a) + pt (a) to be the
perturbed cumulative reward for action a so far.

2. Enumerate the actions a ∈ A in decreasing order of R̃t−1(a) and choose
St to be the set containing the first B actions in this list.

Our analysis of this algorithm is based on a generalization of the argument used by Kalai and

Vempala [KV05] and rests on a simple observation in the case " = ∞:
4

Lemma 3.3. The 1-regret experienced by algorithm FPML(∞) is at most the number of times
that an action currently not in the top B actions (by cumulative reward) becomes the best action
so far on the next round.

Proof. Let mt ∶= maxa∈A Rt (a) for each t ∈ [T ], so that in particular mT = RT (a⋆) where

a⋆ ∶= argmaxa∈A RT (a) is the best-in-hindsight single action. At each round t ∈ [T ] the

actions St taken by FPML(∞) are the top B by cumulative reward; let a⋆t ∶= argmaxa∈A Rt−1(a)
be the best of them, and de�ne the event Et = {a⋆t+1 ∉ St}.
3
Another, orthogonal, direction in the problem space controls how much information our adversary receives.

In the formulation de�ned above, which we focus on, we assume an oblivious adversary who chooses all rewards

in advance before the game starts (or equivalently chooses each action’s reward at each round without seeing our

previous choices). In contrast, an adaptive adversary sees what we do at each round and may use this to inform their

reward choices for the next round. Our full feedback algorithms do in fact work well in this case too, and this is

proven in the accompanying conference paper.

4
Note that using " = ∞ simply chooses the B best actions so far without applying any randomness.
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Fix t and assume ¬Et . We may write

rt (a⋆t+1) = Rt (a
⋆
t+1) − Rt−1(a

⋆
t+1) (3.2)

= mt − Rt−1(a⋆t+1) since a⋆t+1 is the leader (3.3)

> mt − mt−1 (3.4)

by de�nition of mt , mt−1, so since a⋆t+1 ∈ St by assumption,

rt (St ) = max
a∈St

rt (a) > rt (a⋆t ) > mt − mt−1. (3.5)

Hence, de�ning I ∶= {t ∈ [T ] ∶ Et holds}, the total reward received by the algorithm is

T
∑
t=1

rt (St ) > ∑
t∈I c

rt (St ) > ∑
t∈I c

(mt − mt−1) =
n
∑
t=1
(mt − mt−1) − ∑

t∈I
(mt − mt−1) (3.6)

= mT − m0 − ∑
t∈I

(mt − mt−1) (3.7)

> mT − m0 − ∑
t∈I

1 = mT − |I | (3.8)

(taking m0 = 0). Thus the 1-regret is

R1 = RT (a⋆) −
T
∑
t=1

rt (St ) 6 RT (a⋆) − mT + |I | = |I |. (3.9)

This result can be quickly extended to the general case including random perturbations:

Lemma 3.4. For any " ∈ (0, ∞), algorithm FPML(") experiences 1-regret satisfying

E[R1] 6
ln |A |
"

+ E[|I |] (3.10)

where expectations are over the random perturbations and I ⊆ [T ] is the set of rounds at which
an action not currently in the top B (after perturbation) becomes the (perturbed) leader.

Proof outline. The key step is to note that perturbing each action’s cumulative reward at each

round is equivalent in expectation to choosing a random ‘initial’ reward for each action to start

with before the game commences. The proof of Lemma 3.3 is then adapted to use these random

initializations; the new ln |A |/" term comes from an upper bound on the expected di�erence

between the random initialization of the best action and the largest random initialization of

any action. See Appendix A for the details.

This allows us to nicely bound the overall expected regret by arguing that I is usually small,

similarly to in Kalai and Vempala [KV05].

Proposition 3.5. For any " ∈ (0, ∞), algorithm FPML(") experiences 1-regret satisfying

E[R1] 6
ln |A |
"

+ T (1 − e−")B. (3.11)
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Proof outline. The proof argues that E[I ] 6 T (1−e−")B roughly as follows. First, at any round

t , it is shown that for an action not in St to become the best (perturbed) action at this round,

every action a ∈ St must be overtaken (in perturbed cumulative reward) by some action not

in St . Next, it is argued that for this overtaking event to happen to an action it is necessary

that the action’s current cumulative reward be at most one greater than that of the (B + 1)th
best action so far. A probabilistic lemma is applied to show that whether this is the case is

conditionally independent from any other actions given the actions in St and their rewards,

and the probability of this event is bounded using the memoryless property of the exponential

distribution. The full proof is rather nice and given in Appendix A; the reader is encouraged

to take a look!

It remains to make an attractive choice of the perturbation rate ".

3.1.1 Choosing the perturbation rate

We consider two choices of " here; the �rst gives an algorithm with asymptotic regret bound

essentially optimal in |A | (see Chapter 5), and the second gives an algorithm with good behaviour

in |A |, T and B.

Theorem 3.6. Algorithm FPML(") with " = ln ln |A | achieves expected 1-regret

O
(

log |A |
log log |A |

+ T exp [−
B

log |A | ])
. (3.12)

In particular, when B = Ω(log |A | log T ) the expected regret is O(log |A |/ log log |A |).

Proof. Setting " = ln ln |A |, the bound in Proposition 3.5 gives

E[R] 6
ln |A |
ln ln |A |

+ T (1 − e− ln ln |A |)B =
ln |A |
ln ln |A |

+ T (1 −
1

ln |A |)

B

(3.13)

and applying the approximation 1 − x 6 e−x to the second term gives the result.

The next result comes from using a slightly weaker approximation, 1−e−x 6 x instead of 6 ee−x :

Theorem 3.7. Algorithm FPML(") with " = (ln |A |/T )1/(B+1) achieves expected 1-regret

O (T
1
B+1 (log |A |)

B
B+1) .

5
(3.14)

In particular, when B = Ω(log T ) the expected regret is O(log |A |).

Proof. Direct from Proposition 3.5, using the approximation 1 − e−x 6 x . This value of " was

chosen by setting the two terms of that bound approximately equal.

From now on we will use FPML to mean this second instantiation of the algorithm with " =
(ln |A |/T )1/(B+1).6

5
Note that in the case B = 1 this reduces to the standard regret bound O(

√
T log |A |) for ‘Follow the Perturbed

Leader’ (c.f. Chapter 2).

6
Another interesting version of the algorithm results from using " = � ln |A | for some � > 0, giving expected

regret O(T e−B/|A |� ) which is constant for B = Ω(|A |� log T ). It can be shown that in this case the constant upper

regret bound is 1/(1 + �), meaning � controls the trade-o� between size of the constant regret bound and required
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3.2 Higher-order regret bounds

So we’ve given attractive upper bounds on the expected 1-regret incurred by our new algorithm.

Can we do the same for the N -regret, where N > 1? The proof techniques used for the N = 1
case lead to the following instance-dependent parametric regret bound:

Proposition 3.8. Algorithm FPML(") achieves expected N -regret

E[RN ] 6
1 − N −1 + ln (|A |/N )

"
+ T

N−1
∑
k=0

(
B
k)

e−k"(1 − e−")B−k + errN (3.15)

where errN ∶= RT (S⋆N ) − RT (ST |"=∞) is the di�erence in reward between the best-in-hindsight set
of N actions and the set of the top N actions in hindsight on the given problem instance.

In particular, the expected B-regret is

E[RB] 6
1 − B−1 + ln (|A |/B)

"
+ T (1 − e−"B) + errB. (3.16)

Proof outline. Adapt the N = 1 argument, using “an action not in the top B enters the best

N -set" as the event of interest; use the harmonic series form of the expectation of the max of

exponential random variables to get a lower bound, and use a binomial counting argument to

bound the probability of the event.

The error term here is worst-case linear in T . This result does show, however, that FPML is

competitive with the set of the top B �xed actions, and on instances where this set is similar to

the �xed best set of B actions this is a useful result:

Corollary 3.9. Algorithm FPML(") achieves expected regret at most (1 − B−1 + ln (|A |/B))/" +
T (1 − e−"B) relative to the set of the top B actions.

3.2.1 Using super-actions

One naïve way to obtain a decent N -regret bound is to run FPML treating arbitrary subsets of

N actions as unrelated ‘super-actions’ and selecting the best B/N such super-actions;
7

this gives

us a natural regret bound against the best single super-action:
8

Proposition 3.10. For general N ∈ ℕ, algorithm FPMLN achieves expected N -regret

E[RN ] = O (T
N
N+B (N log |A |)

B
N+B) . (3.17)

In particular, when B = Ω(N log T ) the expected N -regret is O(T log |A |).

time resources.

7
We assume for convenience that N divides B.

8
This algorithm is not computationally e�cient; the expensive step is repeatedly �nding the top B/N sets of N

actions under cumulative reward. Since cumulative reward is a submodular function, this is a special case of �nding

the k best sets for maximizing a monotone submodular set function, which is an NP-hard problem (as discussed in

Streeter and Golovin [SG08]). For k = 1 this problem is e�ciently (1 − e−1)-approximable using the algorithm given in

Nemhauser, Wolsey, and Fisher [NWF78], and as with any discrete optimization problem a k > 1 version may then

be e�ciently generated using the procedure from Lawler [Law72]. However, the approximation ratio of the resulting

bandit algorithm is likely to be fairly poor.
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Algorithm 5: FPMLN

Input: available actions A , budget B, benchmark N , rewards (rt (a))a∈A received
after each round t ∈ [T ].

Output: action sets S1, … , ST ⊆ A all of size B.

1. Define A ′ ∶= {S ⊆ A ∶ |S| = N}.
2. Run algorithm FPML with action set A ′ and budget B/N .
3. At each round t , FPML chooses an action set S′t ⊆ A ′; define St ∶= ⋃S′t

and choose this action set for execution. We receive rewards (rt (a))a∈A ;
pass on FPML the rewards r ′t (S) ∶= maxa∈S rt (a) for each S ∈ A ′.

Proof. This is immediate from applying Theorem 3.7 to the internal instance of FPML and

noting that |A ′| = O(|A |N ).
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Chapter 4

Partial Feedback Versions

We now return to the original partial feedback version of the multitasking bandit problem as

de�ned at the start of Chapter 3, where the algorithm discovers the rewards only for the B actions

it actually takes at each round.
1

As in the classical bandit setting, techniques that handle partial feedback will usually involve

making estimates of the unobserved rewards at each round and running a full feedback algorithm

on these estimated rewards. We start by providing a general bound on FPML’s performance

when executed with any unbiased reward estimators, before discussing two di�erent ways to

obtain these reward estimates.

4.1 General result with unbiased estimators

Suppose we have a method of obtaining bounded unbiased estimates r̂t (a) of the true rewards

rt (a) for each round t ∈ [T ] and action a ∈ A . Formally, for each t ∈ [T ] let Ft denote the

�-algebra generated by all observations and choices up to and including round t ; then (r̂t (a))a∈A
are bounded real-valued Ft-measurable (but not Ft−1-measurable) random variables with

E[r̂t (a) ∣ Ft−1] = rt (a), a ∈ A . (4.1)

We start by proving that the same regret decomposition shown in Lemma 3.4 still applies to

FPML(") when run on these estimated rewards instead of the true rewards.

Proposition 4.1. Algorithm FPML(") run on the estimated rewards (r̂t (a))t∈[T ],a∈A achieves ex-
pected 1-regret

E[R1] 6
ln |A |
"

+ T�(1 − e−(�+�)")B, (4.2)

where �, � > 0 are deterministic bounds such that r̂t (a) ∈ [−�, �] for all t ∈ [T ], a ∈ A .

Proof. Shown by closely adapting the proofs of Lemma 3.4; see Appendix A.

Now we need only come up with methods of producing the estimates (r̂t (a))t∈[T ],a∈A and adjust

the regret bound we just showed accordingly.

1
This scenario occurs more commonly in practice and will be the basis of our experiments later in Chapters 7

and 8.
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4.2 A uniform-exploration adaptation of FPML

A �rst idea is to use some of our action budget to explore, gathering information to make our

estimates, and only run FPML with the remaining action slots available. One way of doing this

is to choose C actions uniformly at each round, combining these with the actions selected by

FPML with budget B − C . This algorithm is detailed in Algorithm 6.
2

Algorithm 6: FPMLunif(C ,") (an adaptation of FPML(") to the partial feedback case using uniform
exploration).

Input: parameter C ∈ ℕ, parameter " > 0, available actions A , budget B > C ,
rewards rt (a) received after each round t ∈ [T ] only for the actions taken by the
algorithm.

Output: action sets S1, … , ST all of size at most B.

For each t ∈ [T ]:
1. Independently draw random perturbations pt (a) ∼ Exp(") for each action
a ∈ A , and define R̃t−1(a) ∶= pt (a) + ∑t−1

s=1 r̂s(a) to be the estimated per-
turbed total reward for action a so far (see step 5).

2. Enumerate the actions a ∈ A in decreasing order of R̃t−1(a) and choose
Sexploitt to be the set containing the first B − C actions in this list.

3. Uniformly choose a subset Sexploret ⊆ A of size C . Let St ∶= Sexploret ∪
Sexploitt .

4. Receive feedback rt (a) for the actions a ∈ St .
5. For each action a ∈ A , estimate the reward for this round as:

r̂t (a) ∶=

{
rt (a) |A |

C if a ∈ Sexploret ,
0 otherwise

(4.3)

for use in future rounds.

Proposition 4.2. Algorithm FPMLunif(C ,") achieves expected 1-regret

E[R1] 6
ln |A |
"

+
T |A |
C (1 − e

−"|A |/C
)
B−C

. (4.4)

Proof. The probability of inclusion of any particular action in the uniform sample at each

round is

ℙ(a ∈ Sexploret ) = (|A |−1
C−1 )

(|A |
C )

=
C
|A |

. (4.5)

So the estimates r̂t (a) are unbiased, as

E[r̂t (a)] = rt (a)
|A |
C

⋅ ℙ(a ∈ Sexploret ) + 0 ⋅ ℙ(a ∉ Sexploret ) = rt (a)
|A |
C

C
|A |

= rt (a), (4.6)

2
While more di�cult to analyse, in practice it may be attractive to, rather than using a �xed exploration budget

C at each round, instead use each of the B available action slots for exploration independently with some probability


 at each round (and for exploitation otherwise); this is equivalent to sampling C ∼ Bin(B, 
 ) freshly at each round.

One advantage of this approach is �ner control over the propensity to explore, particularly when B is very small. We

explore this ‘probabilistic exploration’ algorithm empirically in Chapter 7.
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and they are nonnegative and bounded above by
|A |
C .

The result then follows from Proposition 4.1, applied with reduced time budget B−C available

to the actual FPML algorithm.

As in the full feedback case, various values of " may be appropriate; a good choice is given below,

in an analogous result to Theorem 3.7:

Theorem 4.3. The algorithm FPMLunif(C ,") run with " = C
|A | (

ln |A |
T )

1/(B−C+1)
achieves ex-

pected 1-regret

O (T
1

B−C+1C−1|A |(log |A |)
B−C
B−C+1) . (4.7)

In particular, for C = 1 this is
O (T

1
B |A |(log |A |)

B−1
B ) (4.8)

and for B = Ω(log T ) this becomes O(|A | log |A |).

Proof. Immediate from Proposition 4.2 by applying the approximation 1 − e−x 6 x ; the value

" = C
|A | (

ln |A |
T )

1/(B−C+1)
is chosen by setting the resulting two terms equal.

We will use FPMLunif to refer to FPMLunif(C ,") run with this value of " and with C = 1.

4.3 Using data from non-exploration actions

So far to inform our estimates we’ve only used the data gathered from actions explicitly taken

for exploration; intuitively it is desirable to also make use of the abundant reward data from the

remaining actions (chosen for exploitation).

One obvious way to do this is to adapt the ‘inverse propensity’ estimates used in the last section

to use the overall probability of an action being taken, including any exploration:

r̂t (a) ∶=

{
rt (a)

ℙ(a∈St ) if a ∈ St ,
0 otherwise.

(4.9)

It is simple to check that this gives an unbiased estimator. The problem is that the selection

probabilities ℙ(a ∈ St ) implied by FPML are not expressible in a simple closed form, and are

computationally expensive to numerically calculate. An alternative is to estimate them empir-

ically by repeating the selection at each round many times and observing how frequently each

action is taken. This problem was addressed by Neu and Bartók [NB13] for the classical FPL
algorithm in the combinatorial linear bandit setting; they proposed a technique called geomet-
ric resampling that improves on this second option by vastly reducing the number of re-runs

necessary at each round, and we adapt this technique here.

Consider FPML(") running directly on reward estimates as in Section 4.1. For each round t ∈ [T ]
and each action a ∈ A let qt,a ∶= ℙ(a ∈ St ∣ Ft−1). Consider the following estimates:

r̂t (a) ∶=

{
1 − (1 − rt (a))min(Zt,a, M) if a ∈ St ,
1 otherwise,

(4.10)
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where Zt,a is a Geom(qt,a)-distributed random variable and M ∈ ℕ is a �xed hyperparameter. We

�rst show thatmin(Zt,a, M) is a good guess at 1/qt,a and so these estimators are close to unbiased.
3

Remark. These estimators approximate ‘ideal’ estimators of the form

1 − r̂t (a) ∶=

{
1−rt (a))
ℙ(a∈St ) if a ∈ St ,
0 otherwise,

(4.11)

instead of as in Eq. (4.9), i.e. we’re replacing rt (a) with 1 − rt (a). Equivalently, we’re approxi-

mating estimators of the form in Eq. (4.9) applied to costs ci(a) ∶= 1 − ri(a) instead of rewards.

There is an important reason for this. Both Eq. (4.9) and Eq. (4.11) are unbiased estimators

(for either cost or reward), but they have subtly di�erent properties, and crucially, the cost-

based estimators in Eq. (4.11) have a self-stabilizing character: if an action is not taken for

several rounds its estimated cumulative reward will gradually exceed those of actions that have
been taken, incentivizing the algorithm to once again take it. This forms a sort of ‘automatic

exploration’, and we will see that we can actually prove an asymptotically small regret bound

for FPML when using (our approximations to) these estimators even without performing any

explicit exploration.
4

This is an elegant and surprising symmetry break, as in all other respects

using rewards and costs are equivalent; this phenomenon was commented on brie�y by Poland

[Pol05] in the context of classical FPL with standard statistical resampling.

Lemma 4.4. For each round t and action a, given the history Ft−1 the estimated reward in
Eq. (4.10) has conditional expectation

E[r̂t (a) ∣ Ft−1] = rt (a) + (1 − qt,a)M (1 − rt (a)). (4.12)

Proof. Deferred to Appendix A; the argument rests on showing that

E[min(Zt,a, M) ∣ Ft−1] =
1 − (1 − qt,a)M

qt,a
. (4.13)

The random variables Zt,a can be sampled by repeatedly reapplying random (exponential) per-

turbations to every action and stopping when action a is in the top B perturbed actions; see

Algorithm 7. Indeed, on any of the repetitions in step 4 of the algorithm, the probability of a par-

ticular action a being in the top B is qt,a, and so the Zt,a indeed must be geometrically distributed

with parameter qt,a if M = ∞; thus min(Zt,a, M) has the truncated geometric distribution needed,

so Lemma 4.4 applies. This allows us to prove a nice regret bound:

Proposition 4.5. Algorithm FPMLGR(M ,") achieves expected 1-regret

E[R1] 6
ln |A |
"

+ T (1 − e−"M )B +
T |A |
eM

. (4.15)

3
Taking the minimum with M introduces bias but is necessary to avoid potentially unbounded sampling time for

Zt,a in Algorithm 7.

4
Formally, if our geometric resampling estimators were instead based on Eq. (4.9), the corresponding result to

Lemma 4.4 would instead prove that each estimator is a slight underestimate and the argument at the very beginning

of the proof of Proposition 4.5 would then fail.
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Algorithm 7: FPMLGR(M ,") (an adaptation of FPML(") to the partial feedback case using geometric
resampling).

Input: parameter M ∈ ℕ, parameter " > 0, available actions A , budget B,
rewards rt (a) received after each round t ∈ [T ] only for the actions taken by the
algorithm.

Output: action sets S1, … , ST all of size at most B.

For each t ∈ [T ]:
1. Independently draw random perturbations pt (a) ∼ Exp(") for each action
a ∈ A , and define R̃t−1(a) ∶= pt (a)+R̂t−1(a) to be the estimated perturbed
total reward for action a so far.

2. Enumerate the actions a ∈ A in decreasing order of R̃t−1(a) and choose
St to be the set containing the first B actions in this list.

3. Receive feedback rt (a) for the actions a ∈ St .
4. For k = 1, … ,M , repeat steps 1 and 2 above (re-drawing the random per-

turbations) and letXk be the set of B actions chosen. If at any point every
action in St has been re-chosen at least once wemaymove straight to the
next step.

5. For each action a ∈ St define Zt,a to be the first k such that a ∈ Xk , or∞
if no such k exists.

6. For each action a ∈ A , estimate the reward for this round as:

r̂t (a) ∶=

{
1 − (1 − rt (a))min(Zt,a, M) if a ∈ St ,
1 otherwise

(4.14)

(as in Eq. (4.10)) for use in future rounds.

In particular, when run with " = (
ln |A |
T (

ln |A |
T |A | )

B

)

1/(2B+1)

and M = (|A | (
T |A |
ln |A |)

B

)

1/(2B+1)

this

regret is of order

E[R1] = O (T
B+1
2B+1 (|A | log |A |)

B
2B+1) .

5
(4.16)

Proof. Deferred to Appendix A.

5
In the classical case B = 1 this bound is O(T 2/3(|A | log |A |)1/3). Compare this to the regret bound obtained in Neu

and Bartók [NB13] for FPL with geometric resampling of O(
√
T |A | log |A |). Ours is worse in T but better in |A |

(the latter stems from using the cap M to bound the estimates, whereas they used a variance argument that did not

incorporateM ; we’ve essentially shown that the choice ofM is a trade-o� between bias and variance of the estimators,

and that picking a smaller value can actually be bene�cial). It is quite possible that a tighter analysis using round-

speci�c bounds on the estimated rewards rather than the deterministic global bounding interval [1 − M,M] would

yield a slightly improved result in T . Further thinking along this line would be an interesting direction for future

work.
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Chapter 5

Lower Regret Bounds

We move now to some initial lower bounds on the achievable regret for the multitasking bandit

problem.

5.1 De�nitions

Let’s start by formalizing the notion of an environment (problem instance) and policy (algo-

rithm).
1

De�nition 5.1. An environment E is a set of �xed rewards rt (a) ∈ [0, 1] indexed by t ∈ [T ] and
a ∈ A for some horizon T > 1 and action set A . Formally, E is a mapping2 A × [T ] → [0, 1].

We write E (T ,A ) to refer to the set of all environments with horizon T and action set A .

De�nition 5.2. A B-policy � is a function from a horizon T and action set A to a sequence of
T mappings

(S1, (r1(a))a∈A , … , St−1, (rt−1(a))a∈A ) ↦ Pt (5.1)

for t ∈ [T ], where each St is a subset of A of size at most B and each Pt is a distribution over
subsets St of size at most B.3

We write Π(B) for the set of all B-policies.

5.2 Lower-bounding the 1-regret

We start by bounding the 1-regret; we’ll then prove a lower bound for N > 1 by reducing to this

case.

Lemma 5.3. The maximum of k independent Bin(n, 1/n) random variables has expected value
Θ(log k/ log log k) for large n.
1
In what follows we will consider ‘randomized’ environments, which are formally distributions over environments.

If there is a distribution over environments on which an algorithm incurs high regret in expectation, there certainly

must be some speci�c environment in which the algorithm incurs high (expected) regret. Similarly, a randomized

policy is simply a distribution over deterministic policies (as de�ned above), so for proving lower bounds it will

su�ce to focus on the case of deterministic policies; the results will generalize immediately to randomized ones.

2
Note this models the setting of an oblivious adversary. This is the main setting we’re interested in but it could be

interesting to generalize our earlier results to adaptive adversaries.

3
This policy de�nition models full feedback algorithms; in the partial feedback setting we allow dependence only

on (S1, (r1(a))a∈S1 , … , St−1, (rt−1(a))a∈St−1 ).
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Proof. Partly based on an argument from Gnedenko [Gne43] (in the proof of Theorem 1); see

Appendix A for the details.

Theorem 5.4. For any � ∈ Π(B), any horizon T such that B = Ω(log T ), and any action set A
there exists an environment E ∈ E (T ,A ) in which � has 1-regret

E[R1] = Ω(
log |A |

log log |A |
− log T) .4 (5.2)

Proof. Draw i.i.d. Bern(1/T ) rewards (rt (a))t∈[T ],a∈A . The 1-regret is

R1 = max
a∈A

T
∑
t=1

rt (a) −
T
∑
t=1

rt (St ) (5.3)

where (St )t∈[T ] are the action-sets chosen by � . The �rst term is the maximum of |A | indepen-

dent Bin(T , 1/T ) random variables, so by Lemma 5.3 has expectationΘ(log |A |/ log log |A |) for

large T . The second term has expectation

Tℙ(∃a ∈ S1 ∶ r1(a) = 1) = T [1 − (1 − 1/T )B]. (5.4)

For B = log T this is Θ(log T ) (from the Puiseux series at in�nity). So the policy regret is

E[R1] = Θ(log |A |/ log log |A | − log T ).5

Remark. This is more an ‘example’ proof than anything, and illustrates that this standard tech-

nique for lower bounds in the classical bandit setting has more limited utility when B > 1.
Other, better lower bounds are possible (some are given in the accompanying conference pa-

per but omitted here for lack of space), and in general this is an an important direction for

future work.

5.3 Lower-bounding the N -regret

We can reduce to the above case as follows (and this argument applies to any lower bound on

the 1-regret):

Theorem 5.5. If all the rewards are chosen i.i.d. Bern(T , 1/T ) then any B-policy will have N -
regret

E[RN ] = Ω(N
log(|A |/N )

log log(|A |/N )
− N log T) (5.5)

when B = Ω(N log T ).

Proof. Draw i.i.d. Bern(1/T ) rewards (rt (a))t∈[T ],a∈A . So every B-set chosen by the algorithm

will receive reward at round t with probability 1 − (1 − 1/T )B, so the algorithm’s expected

reward is T (1 − (1 − 1/T )B) which is Θ(N log T ) for B = N log T .

5
It is possible using Bern(T , 1/BT ) to achieve a lower bound that grows as the maximum of |A | independent

Bin(T , 1/BT ) random variables (without any − log T term), which may be a more useful result from some perspectives.

5
The upper regret bound for the full feedback FPML(") algorithm with " = ln ln |A | shown in Theorem 3.6 matches

this asymptotically in |A |. It would be interesting to �nd a parameterization of the algorithm that matches a lower

bound in T too.
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Now, loosely following the proof of Theorem 14 in Streeter and Golovin [SG08], partition A
into N bins, each containing |A |/N actions; let a⋆i be the best action in the ith bin and write

S⋆ ∶= {a⋆1 , … , a⋆N }. Let S = {a1, … , aN } contain a randomly selected action from each bin.

For each i ∈ [N ] randomly mark xi ∶= RT (a⋆i ) − RT (ai) of the rounds at which a⋆i did receive

a reward; let Mi be the marked rounds and Ui be the unmarked rounds (still only at which a

reward was received). Noting |Ui | = RT (ai), for any round t we have ℙ(t ∈ Ui) = ℙ(rt (ai) = 1) =
1/T , so ℙ(t ∈ ⋃i Ui) = 1 − (1 − 1/T )N . Thus E[|⋃i Ui |] = T (1 − (1 − 1/T )N ) which is Θ(N ).

We now wish to bound X ∶= |⋃i Mi ⧵ ⋃i Ui |. De�ne Y to be the number of rounds at which

exactly one action in S⋆ receives a reward, and let � be the event {∀a ∈ A RT (a) 6 T /N}.

Fixing i ∈ [N ] and t ∈ Mi , the probability that exactly one action in S⋆ receives a reward at

round t is

ℙ(rt (a⋆j ) = 0 ∀j ≠ i ∣ � ) = ∏
j≠i (

1 −
RT (a⋆j )
T )

∣ � (5.6)

> (1 − 1/N )N−1 > e−1, (5.7)

so E[Y ∣ � ] > e−1E[∑i |MN |] = e−1NE[x1], and by the result from Lemma 5.3 on Bin(T , 1/T )
maxima, E[x1] = Ω(log(|A |/N )/ log log(|A |/N )).

Finally, note that by Hoe�ding’s inequality

ℙ(� ) > 1 − |A | ⋅ ℙ(RT (a) > T /N + 1) > 1 − e−2T /N
2
= 1 − o(1) (5.8)

and E[X] > E[Y ] > E[Y ∣ � ]ℙ(� ) (the �rst inequality since if a round is marked but only one

action in S⋆ receives a reward then it cannot also be unmarked), so using that E[RT (S⋆)] =
E[X] + E[|⋃i Ui |] gives the result.
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Chapter 6

Online Submodular Function
Maximization

In a closely related work that we mentioned brie�y in Section 1.2, Streeter and Golovin [SG08]

introduced an online greedy algorithm for maximization of submodular functions (a problem

of which the multitasking bandit problem is a special case). In this chapter we �rst prove a

modi�cation to their regret analysis that allows comparison to the regret bounds in this work.

Next, we show that our FPML algorithm (and multitasking bandit algorithms in general) can be

used as a subroutine in an adaptation of theirs to achieve better performance in various cases.

In Chapters 7 and 8 we will empirically compare FPML with the algorithms discussed in this

chapter.

6.1 Background and notation

Consider some preliminary de�nitions:
1

De�nition 6.1. Let an action now be an activity-duration pair a = (�, � ) ∈ V ×X = A for some
�xed �nite set of activities V and some set X ⊆ (0,∞) of allowable durations.2

De�ne a schedule to be a �nite sequence of actions, and let S be the set of all schedules. The
length � (S) of a schedule S ∈ S is the sum of the durations of all the actions in S. Write S⟨�⟩ for
the pre�x of length � of a schedule S.

Finally, de�ne a job to be a function f ∶ S → [0, 1] such that for any schedules S1, S2 ∈ S and
any action a ∈ A :

1. f (S1) 6 f (S1 ⊕ S2) and f (S2) 6 f (S1 ⊕ S2) (monotonicity);

2. f (S1 ⊕ S2 ⊕ ⟨a⟩) − f (S1 ⊕ S2) 6 f (S1 ⊕ ⟨a⟩) − f (S1) (submodularity).

Streeter and Golovin [SG08] then tackle the following problem:

De�nition 6.2 (Online submodular function maximization). The problem consists of a game
with T rounds. We are given some �xed budget B > 0 and at each round t ∈ [T ] we must choose

1
We use notation based on ours from the rest of this work rather than following that of Streeter and Golovin

[SG08].

2
We will in practice enforce integer durations (i.e. X = ℕ) so that there are only �nitely many possible actions to

choose from given a duration constraint.
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a schedule St ∈ S with E[�(St )] 6 B to be evaluated by a job ft which is only revealed after our
choice. The goal is to maximize the cumulative output ∑T

t=1 f (St ).

It is worth immediately noting that the full feedback multitasking bandit problem is a special

case of this where actions are constrained to be unit-duration (i.e. A = V × {1}) and each ft
takes the form maxa∈S rt (a) (in this case the order of actions in a schedule does not matter).

Streeter and Golovin [SG08] use the following regret notion:

De�nition 6.3 (Regret). The (1−e−1)-approximation B-regret of an algorithm solving the above
problem is

R
approx
B ∶= (1 − e−1) max

S∈S ∶�(S)6B

T
∑
t=1

ft (S) −
T
∑
t=1

ft (St ) (6.1)

where S1, … , ST are the schedules output by the algorithm.

The authors propose an online greedy algorithm OG (Algorithm 8) which uses an experts algo-

rithm (a full feedback classical multi-armed bandit algorithm) such as WMR as a subroutine.

Algorithm 8: OG

Input: Budget B ∈ ℕ, experts algorithm E , available activities V , job ft revealed
after each round t ∈ [T ].

Output: schedules S1, … , ST ∈ S all with expected length at most B.

Let E1, … ,EB be separate instances of the experts algorithm E .

For t ∈ [T ]:
1. Let S(0)t = ⟨⟩ be the empty schedule.
2. For each i ∈ [B]:

(a) Use Ei to choose an action a(i)t = (�, � ) ∈ A .
(b) With probability 1/� set S(i)t ∶= S(i−1)t ⊕ ⟨a(i)t ⟩, else set S(i)t ∶= S(i−1)t .

3. Set St ∶= S(B)t .
4. Receive the job ft .
5. For each i ∈ [B] and each action a = (�, � ) ∈ A feed back the reward

r (i)t (a) ∶=
ft (S(i−1)t ⊕ ⟨a⟩) − ft (S(i−1)t )

�
(6.2)

to experts algorithm Ei .

They prove the following regret bound:

Theorem 6.4. Algorithm OG run with WMR as the experts algorithm and time allowance B
has

E[Rapprox
B ] = O (

√
BT log |A |) . (6.3)

We �rst look to prove a more general regret bound for the same algorithm.
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6.2 A more general regret bound

In this section we generalize the analysis in Streeter and Golovin [SG08] of the algorithm OG to

the case where the algorithm is competing against time resources N not necessarily equal to its

budget B.

We start by showing a key preliminary result, which is a generalization of Theorem 6 in Streeter

and Golovin [SG08].

Lemma 6.5. Let f be any job and let Ḡ = ⟨ḡ1, ḡ2, …⟩ be an in�nite ‘greedy’ schedule satisfying

f (Ḡj ⊕ ḡj) − f (Ḡj)
�̄j

> max
(�,� )∈V ×(0,∞)(

f (Ḡj ⊕ ⟨(�, � )⟩) − f (Ḡj)
� ) − "j , j > 1 (6.4)

for additive errors "1, "2, … > 0, where ḡj = (v̄j , �̄j) and Ḡj = ⟨ḡ1, … , ḡj−1⟩ for each j > 1.

Then for any L, B0 ∈ ℕ and for B′ ∶= ∑L
j=1 �̄j ,

f (Ḡ⟨B′⟩) > (1 − e
−B′/B0

) f (S
⋆
B0) −

L
∑
j=1

"j �̄j (6.5)

where S⋆B0 ∶= argmaxS∈S ∶�(S)=B0 f (S) is the best schedule of length B0 for f .

Proof. See Appendix A.

Fix a sequence f1, … , fT of jobs we’re fed, and de�ne

S⋆N ∶= argmax
S∈S ∶�(S)6N

T
∑
t=1

ft (S) (6.6)

to be the best-in-hindsight �xed schedule using N time resources or less. Lemma 6.5 motivates

the following generalized regret de�nition:

De�nition 6.6. For any sequence S1, … , ST of schedules and any B, N ∈ ℕ, de�ne

Rapprox
(B,N ) ∶= (1 − e

−B/N
)

T
∑
t=1

ft (S⋆N ) −
T
∑
t=1

ft (St ) (6.7)

(so that Rapprox
(B,B) = Rapprox

B ).

OG achieves a nice guarantee on this altered regret:

Proposition 6.7. For any N ∈ ℕ algorithm OG run with budget B ∈ ℕ produces a sequence of
schedules (each of length at most B in expectation) satisfying

E[Rapprox
(B,N ) ] 6 E

[

B
∑
i=1

R1(Ei)]
, (6.8)

where R1(Ei) is the 1-regret incurred (over all T rounds) by the ith subroutine experts algorithm.

Proof. As argued in Streeter and Golovin [SG08], we may view the sequence of actions a(i)1 , … , a(i)T
selected by each experts algorithm Ei as a single ‘meta-action’ ãi ∈ A T

; so the schedules
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S1, … , ST output by OG can be viewed as a single ‘meta-schedule’ S̃ = ⟨ã1, … , ãB⟩ over A T

which is a version of the greedy schedule ḠB+1 for the job f = 1
T ∑T

t=1 ft , and it may be as-

sumed that each meta-action ãt takes unit time per job. Thus we may write

Rapprox
(B,N ) = T [(1 − e

−B/N
) f (S

⋆
N ) − f (S̃)] (6.9)

(after extending the domain of f appropriately). Applying Lemma 6.5 with L = B, B0 = N ,

B′ = ∑B
i=1 �̄i = B (by the unit-time assumption) then immediately gives

Rapprox
(B,N ) < T

B
∑
i=1

�̄i"i = T
B
∑
i=1

"i . (6.10)

Taking expectations and using that E["i] = E[R1(Ei)/T ] as argued in Streeter and Golovin

[SG08] gives the result:

E[Rapprox
(B,N ) ] 6 T

B
∑
i=1

E["i] = T
B
∑
i=1

E [
R1(Ei)
T ] . (6.11)

In particular, we get the following behaviour:

De�nition 6.8. For any sequence S1, … , ST of schedules and any N ∈ ℕ, the N -regret is de�ned
as

RN ∶=
T
∑
t=1

ft (S⋆N ) −
T
∑
t=1

ft (St ). (6.12)

Theorem 6.9. Let B = Ω(N log T ) and assume B > N . Then the algorithm OG produces a
sequence of schedules (each of length at most B in expectation) with N -regret satisfying

E[RN ] = O
⎛
⎜
⎜
⎝
E
[

B
∑
i=1

R1(Ei)]

⎞
⎟
⎟
⎠
. (6.13)

In particular, when runwithWMR as the subroutine experts algorithm, this isO (
√
BT log |A |).

3

Proof. This follows quickly from Proposition 6.7: since B = Ω(N log T ), there must be some

constant c > 0 such that B > cN ln T for all T large enough. So e−B/N 6 e−c ln T = T −c . Thus

Rapprox
(B,N ) > (1 − T −c)

T
∑
t=1

ft (S⋆N ) −
T
∑
t=1

ft (St ) = RN − T −c
T
∑
t=1

ft (S⋆N ). (6.14)

It follows that

RN 6 Rapprox
(B,N ) + T −c

T
∑
t=1

ft (S⋆N ) 6 Rapprox
(B,N ) + T −c ⋅ T . (6.15)

3
Compare this to Theorem 6.4; in other words, allowing time resources that grow logarithmically in the number of

rounds (relative to the time constraint we’re benchmarking against) is su�cient to be able to perform asymptotically

as well as the best benchmark schedule, rather than just a fraction 1 − 1
e times as well.
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It remains just to note that, since B > N , we must have c > 1 (otherwise there’d be some T
large enough that 1/ ln T < c so B < N )), and so RN 6 Rapprox

(B,N ) + 1. The result follows.

The bound E [∑
B
i=1 R1(Ei)] = O(

√
BT log |A |) when using WMR was shown in Streeter and

Golovin [SG08].

6.3 A hybrid algorithm

A generalization of OG is possible that uses a multitasking bandit algorithm instead of a classical

bandit algorithm as the subroutine: each subroutine algorithm gets control over some B′ ∈ [B]
of the actions in the �nal set rather than just one—so the number of subroutines will decrease by

a factor of B′—creating a trade-o� between the greediness of OG and the properties whatever

subroutine algorithm is used. In this section we explore how using such a ‘hybrid’ algorithm can

improve the regret bound.

Assume from now on that all actions are of unit duration, so A = V ×{1}. Consider Algorithm 9.

Algorithm 9: OGhybrid

Input: Budget B ∈ ℕ, full feedback multitasking bandit algorithm B, available
actions A , batch size B′, jobs ft revealed after each round t ∈ [T ].

Output: schedules S1, … , ST all of length at most B.

Assume for simplicity that B′ ∣ B; defineK ∶= B/B′. LetB1, … ,BK be instances
of B, each with budget B′.

For each t ∈ [T ]:
1. Let S(0)t = ⟨⟩ be the empty schedule.
2. For each i ∈ [K]:

(a) Use Bi to choose B′ actions a((i−1)B
′+1)

t , … , a(iB
′)

t .
(b) Set S(i)t ∶= S(i−1)t ⊕ ⟨a((i−1)B

′+1)
t , … a(iB

′)
t ⟩.

3. Set St ∶= S(K)t .
4. Receive the job ft .
5. For each i ∈ [K]:

(a) For each action a ∈ A feed back the reward

r (i)t (a) ∶= ft (⟨a
⋆
t,1, … , a⋆t,i−1, a⟩) − ft (⟨a

⋆
t,i−1, … , a⋆t,i⟩) (6.16)

(see def below) to multitasking bandit algorithm Bt .
(b) Define a⋆t,i ∶= argmaxj∈[B′] r

(i)
t (a

((i−1)B′+j)
t ).

Intuitively, each of the K instances of B selects B′ ‘good’ actions at each round to be added in

a batch to the schedule (in some arbitrary order). The overall schedule submitted at each round

consists of all B = KB′ actions chosen by any of the subroutine algorithms.

Given regret bounds for each instance of B relative to a single optimal action, we can nicely

derive a regret bound for the overall algorithm by arguing it is related to a version of the standard

OG algorithm with budget K . We will need a small additional assumption on the nature of the
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jobs f1, … , fT :

Assumption 6.10. In addition to monotonicity and submodularity, each job f ∶ S → [0, 1]
also satis�es the following: for any schedules S1, S2, S3 ∈ S ,

f (S1 ⊕ S2 ⊕ S3) > f (S1 ⊕ S3).4 (6.17)

We can now prove our regret bound:

Proposition 6.11. Under Assumption 6.10 and for B = Ω(NB′ log T ), algorithm OGhybrid ex-
periences N -regret O(BE[R1(E )]/B′), where E[R1(B)] is the expected 1-regret incurred by any
instance of B.

Proof outline. The proof proceeds by analysing an instantiation of OG with budget K running

�ctional subroutine experts algorithms E1, … ,EK such that that Ei at each round t picks the

action a⋆t,i . It is argued �rstly that this imaginary instantiation of OG incursN -regret at least as

great as that of the OGhybrid algorithm of interest, and furthermore that each �ctional experts

algorithm Ei incurs the same 1-regret as the corresponding multitasking bandit algorithm Bi .

The result from Theorem 6.9 is then appealed to, upper-bounding the former by the sum of the

latter in expectation and thus completing the proof. Full details are given in Appendix A.

In particular, using FPML as our subroutine B gives the following regret bound:

Theorem 6.12. Under Assumption 6.10 and for B = Ω(NB′ log T ), algorithmOGhybrid run with
subroutine algorithm FPML experiences N -regret

E[RN ] = O
(
BT 1/(B′+1)(log |A |)B′/(B′+1)

B′ )
. (6.18)

In particular, if B′ = Ω(log T ) (so B = Ω(N (log T )2)) this is O(B log |A |/ log T ).

Proof. Immediate from Proposition 6.11 and Theorem 3.7.

6.4 Partial feedback

Streeter and Golovin [SG08] also studied a version of their algorithm OG which uses Exp3 in-

stead of WMR as a subroutine to handle the partially transparent feedback case where only the

values ft (S) for each pre�x S of the chosen schedule St are revealed after each round, rather than

ft itself. For this version of OG, Theorem 6.9 gives an expectedN -regret of O (
√
BT |A | log |A |).

OGhybridcannot so simply be adapted to their partially transparent feedback regime, but the

special case of the partial feedbackmultitasking bandit problem considered previously—where the

algorithm actually gets strictly more information than in this more general partially transparent

feedback setting—can be handled nicely by an adaptation of OGhybridrunning a partial feedback

version of FPML as a subroutine. It is these versions of OG and OGhybridthat we apply in the

next section.

4
This is a slight extension of monotonicity which holds in most natural applications (and certainly in the multi-

tasking bandit special case).
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Chapter 7

Experiments: Online
Hyperparameter Search

In this chapter we explore empirically a natural application of multitasking bandit algorithms to

black-box optimization.

7.1 Background

In machine learning, model hyperparameters are often chosen via a logarithmically-spaced grid

search
1
. This quickly becomes infeasible as the space of plausible hyperparameters grows, and

is information-ine�cient.

Many more sophisticated black-box optimization algorithms exist, often based on Bayesian tech-

niques, which aim to minimize a function given only a membership (value) oracle. With a lim-

ited number of queries (function evaluations) available these can perform much better than grid

search, and are well-suited to the hyperparameter selection problem. However, there is a deluge

of such algorithms to choose from, some performing better than others on particular types of

task; in a scenario where many hyperparameter selection problems are to be processed (e.g. in a

data center or a lifelong learning agent) it may be desirable to learn over time which one of several

such optimizers to apply for the most e�ective results. This situation is modelled by the classical

multi-armed bandits problem (with bandit feedback). With a slightly-increased time/compute

budget, though—or, in particular, with the availability of parallel processing—one may instead

wish to learn while running several such optimizers independently on each task, picking the best

set of hyperparameters suggested by any one of them and thus further maximizing the expected

performance.
2

This is a case of the partial feedback multitasking bandit problem, and we apply

our algorithms to this scenario here.

1
I.e. a well-distributed set of candidates is identi�ed for each hyperparameter and the model is trained with each

combination of these, selecting the combination that achieves the lowest training loss.

2
In practice for the hyperparameter selection problem various less-naïve optimizer ensembling techniques may

make better use of the available compute time (e.g. in the parallelized setting by allowing information sharing between

the concurrent optimizers); but our scenario is of interest as an instance of the more general situation where a learning

agent may have several di�erent learning techniques at its disposal (which in general can only be run independently)

and may wish to learn over time a limited subset of them to apply on new learning problems which maximizes the

chance of success.
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7.2 Experimental setup

Recognizing the importance of black-box optimization for machine learning, in 2020 NeurIPS

ran a black-box optimization competition for ML hyperparameter selection; each submitted op-

timizer was evaluated on a cross-section of model architectures and learning problems, with the

�nal ranking determined by an average normalized performance across all of these. We base

our approach on theirs, using Uber’s Bayesmark package [Ube20], as they did, to construct and

execute experiments.
3

Speci�cally, for each of 184 classi�cation/regression problems from the Penn Machine Learning

Benchmarks dataset
4

we used 9 standard black-box optimization algorithms to tune both a multi-

layer perceptron (neural network) and a lasso regressor/classi�er. On each of these T = 368
problems, each optimizer was allowed 20 function evaluations (i.e. training runs).

5

The best result achieved by each optimizer was used to calculated a normalized performance

score in [0, 1] relative to an estimate of the best possible performance achievable and the per-

formance achieved by a random search; our approach is based on the mean scores used by the

Bayesmark package.
6

Various multitasking bandit algorithms were then run as follows: each al-

gorithm is given a �xed budget B, the number of di�erent optimizers it is allowed to run on each

problem; the ML problems are fed to the algorithm in some particular order, and the normalized

scores of the optimizers chosen by the algorithm for the current problem are used as rewards.

The algorithm receives these rewards as feedback, and its overall performance is calculated by

averaging the maximum reward it receives on each problem over all problems.
7

The code for our experiments is available at https://github.com/candidate-1034792/blackboxbandits.

7.3 Comparison of FPML algorithm variants

We start by comparing four partial feedback versions of FPML:

1. Fixed exploration: the FPMLunif algorithm from Section 4.2, choosing C actions for

exploration uniformly at each round.

2. Probabilistic exploration: as above, but now using each of the B action slots for uniform

exploration independently with probability 
 . In e�ect, C is now chosen stochastically at

each round with distribution Bin(B, 
 ).

3. Geometric resampling: the FPMLGR algorithm from Section 4.3.

3
The data published from the 2020 BBO competition is insu�cient for us to simply use their results.

4
This is decreased from the full dataset due to dropped datapoints for various reasons.

5
This was very computationally-intensive, using more than 1500 hours of single-core CPU compute time; while

we evaluated far fewer optimizers than in the 2020 competition, we evaluated them on over 6 times more problems.

6
Formally, the reward for optimizer a at round t is de�ned as ri(a) ∶= losst (a)−optt

randt (a)−optt
, where optt is an estimate of the

global minimum classi�cation/regression loss achievable (at validation, not test) on the task corresponding to round

t , randt to is the mean performance of a random hyperparameter search on this task (i.e. the smallest loss achieved

using any hyperparameter in the random search, averaged over trials), and losst (a) is the actual averaged minimum

loss of the optimizer a on this problem. Conceptually, the reward ranges from 0, when optimizer a performs as badly

as a random search, to 1, when it performs as well as is possible on this task.

7
One detail to note is that each optimizer, on each problem, is actually given two scores: one for its performance

on the validation dataset it is optimizing on, and one for the performance of its chosen hyperparameters on an unseen

test set. As we are interested in the dynamics of the general online learning setting we’ve been modelling, the bandit

algorithms receive only the validation score as their rewards and we discuss only these scores here; from a practical

machine learning perspective, it is likely more desirable for the rewards at each round to be the test scores instead.
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Table 7.1: Mean normalized validation scores of FPML algorithms over black-box optimizers.

Number of optimizers in parallel (B)

2 3 4 5 6

Fixed exploration 0.538 0.684 0.763 0.819 0.857
Probabilistic exploration 0.549 0.683 0.766 0.821 0.859

Resampling 0.654 0.754 0.813 0.854 0.888
Resampling and exploration 0.602 0.721 0.791 0.836 0.870

Table 7.2: Standard deviations of normalized validation scores of FPML algorithms over black-box
optimizers.

Number of optimizers in parallel (B)

2 3 4 5 6

Fixed exploration 0.0200 0.0213 0.0197 0.0164 0.0125
Probabilistic exploration 0.0203 0.0207 0.0169 0.0149 0.0132

Resampling 0.0161 0.0141 0.0099 0.0086 0.0081
Resampling and exploration 0.0284 0.0198 0.0165 0.0145 0.0115

4. Geometric resampling and probabilistic exploration: this mixes FPMLGR with the


 -probabilistic exploration from the second algorithm, thus both making use of all received

information and explicitly exploring some number of actions at each round.

For our initial comparison, we set C = 1 and 
 = 1/B for each B, so that in expectation the same

number of actions are explored where relevant. The mean rewards of each algorithm averaged

over 100 trials are as in Table 7.1; the sample standard deviations of these are given in Table 7.2.

See Section 7.3 for a visual representation.

As expected, the �xed-exploration and probabilistic-exploration variants perform very similarly

in all cases; what’s interesting is that not only does the version with geometric resampling do

much better than either of these, but adding explicit exploration at the to the resampling algo-

rithm is actually worse than using resampling only. In general the variances of the four algo-

rithms are similar.

7.4 Comparison to online greedy algorithms

We next look at how FPML compares to best-in-hindsight action sets and partial feedback ver-

sions of OG and OGhybrid from Chapter 6 in this black-box optimization setting. For each B we

compare the following:

1. The best �xed choice of B optimizers in hindsight.

2. The partial feedback version of FPML with geometric resampling and no explicit explo-

ration (i.e. algorithm FPMLGR).

3. For each combination B′, K ∈ ℕ such that B′K = B: the algorithm OGhybrid with the

above version of FPML as the subroutine, using K internal instances of FPML each with

an action budget of B′.

4. The original algorithmOG from Streeter and Golovin [SG08] usingExp3 as the subroutine.

32



Figure 7.1: Normalized scores for FPML algorithms over black-box optimizers. Error bars are 95%
confidence intervals for a single observation (i.e. for the underlying distribution, not the sample
mean) assuming a Gaussian distribution.

Table 7.3 shows the means and standard deviations over 100 trials comparing the above algo-

rithms for B ∈ [6]; Fig. 7.2 visualizes these results excluding instances of the third algorithm with

B′ ≠ 1.

It appears that any introduction of the greediness in the OG algorithms harms performance, with

our FPML algorithm surpassing all others (save the best �xed set of optimizers in hindsight) for

every B and with instances of OGhybrid doing progressively worse the more internal FPML
instances there are.

8
The variances of the various algorithms are comparable.

7.5 Problem ordering

In the above experiments, all online algorithms were fed the optimization problems in the fol-

lowing order: �rst, a multi-layer perceptron (neural network) was to be trained on each dataset,

and then a lasso regressor was to be trained on each.

We now re-run the last experiment but using the transposed problem ordering: for each dataset

in turn train �rst an MLP and then a lasso regressor. While the �rst problem ordering contains

one major regime change, this new ordering instead models a situation where incoming tasks

are well-mixed.

Fig. 7.3 shows the results corresponding to Fig. 7.2 but for this alternative problem order. The re-

sults are very similar; there is a very slight improvement in performance on the second ordering,

particularly for small B (as might be expected, since the algorithms don’t ‘mislearn’ optimizers

that are only good at MLP) but no substantial di�erence.

8
The intuition behind this phenomenon will be discussed later.
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Table 7.3: Sample means and standard deviations of normalized validation scores of various com-
binations of FPML and online greedy algorithms over black-box optimizers.

(a) B = 1

Mean StD

Best in hindsight 0.574 0
FPML 0.426 0.0202
Exp3 0.351 0.0194

(b) B = 2

Mean StD

Best in hindsight 0.710 0
FPML 0.652 0.0194

OG with FPML ((B′, K) = (1, 2)) 0.577 0.0187
OG with Exp3 0.519 0.0179

(c) B = 3

Mean StD

Best in hindsight 0.779 0
FPML 0.751 0.0151

OG with FPML ((B′, K) = (1, 3)) 0.657 0.0191
OG with Exp3 0.617 0.0166

(d) B = 4

Mean StD

Best in hindsight 0.836 0
FPML 0.813 0.0108

OG with FPML ((B′, K) = (2, 2)) 0.756 0.0149
OG with FPML ((B′, K) = (1, 4)) 0.716 0.0178

OG with Exp3 0.689 0.0151

(e) B = 5

Mean StD

Best in hindsight 0.874 0
FPML 0.855 0.0094

OG with FPML ((B′, K) = (1, 5)) 0.756 0.0150
OG with Exp3 0.734 0.0140

(f) B = 6

Mean StD

Best in hindsight 0.901 0
FPML 0.888 0.0072

OG with FPML ((B′, K) = (3, 2)) 0.836 0.0111
OG with FPML ((B′, K) = (2, 3)) 0.814 0.0143
OG with FPML ((B′, K) = (1, 6)) 0.785 0.0137

OG with Exp3 0.767 0.0157

Figure 7.2: Normalized scores for various combinations of FPML and online greedy algorithms over
black-box optimizers. Error bars are 95% confidence intervals for a single observation (i.e. for the
underlying distribution, not the sample mean) assuming a Gaussian distribution.
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Figure 7.3: Normalized scores for various combinations of FPML and online greedy algorithms over
black-box optimizers, on the alternative problem ordering. Error bars are 95% confidence intervals for
a single observation (i.e. for the underlying distribution, not the sample mean) assuming a Gaussian
distribution.

7.6 Discussion

So our algorithm seemingly performs much better at the black-box optimization problem than

any of the greedy algorithms. Why might this be the case?

As discussed in Chapter 3, FPML with B actions achieves asymptotically small regret relative to

the set of the top B individual actions in hindsight; see Proposition 3.8. On problem instances

where the error errB de�ned there is small, we can expect the FPML algorithm to achieve much

better B-regret (and hence better absolute performance) than the online greedy algorithms.
9

The black-box optimization problem is an example of such a problem instance: Table 7.4 shows

the scores of the optimal B-subset and of the set of the top B actions in hindsight for each B ∈ [9];
Table 7.5 shows which optimizers each of these sets consisted of. It can be seen that (a) the reward

di�erence errB between the two is very small for every value of B and (b) the underlying sets

are very similar, explaining this similarity in reward.

This observation explains the good performance of FPML on this problem. In the next chapter

we explore synthetic problem instances to shed further light on when we can and can’t expect

FPML to outperform greedy algorithms.

9
Recall thatOG only has asymptotically small (1−e−1)-approximation B-regret, not small B-regret itself. Intuitively,

small errB means greediness is not necessary, as the actions aren’t su�ciently anticorrelated for choosing the top B
actions in hindsight to be that suboptimal, and so any of the greedy algorithms are a waste of computational resources:

it pays to focus on the leaderboard and spend your exploration that way.
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Table 7.4: Normalized scores of the best fixed sets in hindsight for the BBO problem vs. the tops of
the leaderboard.

B Best B-set Top B actions Difference

1 0.574 0.574 0
2 0.710 0.681 0.0298
3 0.779 0.779 0
4 0.836 0.818 0.0186
5 0.874 0.852 0.0226
6 0.901 0.898 0.0025
7 0.923 0.923 0
8 0.935 0.935 0
9 0.935 0.935 0

Table 7.5: The best fixed sets of optimizers in hindsight for the BBO problem vs. the tops of the
leaderboard, with differences highlighted in red. Optimizers are labelled A through I.

B Best B-set Top B actions

1 H H
2 G,H H,I
3 G,H,I G,H,I
4 B,G,H,I E,G,H,I
5 B,D,G,H,I A,E,G,H,I
6 A,B,D,G,H,I A,B,E,G,H,I
7 A,B,D,E,G,H,I A,B,D,E,G,H,I
8 A,B,C,D,E,G,H,I A,B,C,D,E,G,H,I
9 A,B,C,D,E,F,G,H,I A,B,C,D,E,F,G,H,I
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Chapter 8

Experiments: Synthetic
Environments

Motivated by the discussion at the end of the last chapter, we seek now to further explore the

relative performance of the partial feedback versions of FPML, OG and OGhybrid
1

on various

synthetic problem classes. Let:

• S⋆ be the best-in-hindsight set of B actions;

• Sgreedy be the greedy choice of B actions in hindsight;

• Stop be the set of the top B actions in hindsight.

8.1 An anticorrelated environment

The �rst environment we examine is one where S⋆ = Sgreedy and this set does better than Stop;
greediness is better than picking the top B actions. There are |A | = 15 available actions and two

types of round, I and II, which occur with equal probability; rewards are distributed within each

round according to Table 8.1. So the best �xed action set of any size up to 10 will be split evenly

across actions {1, 2, 3, 4, 5} and actions {11, 12, 13, 14, 15}—and will be the greedy choice—but for

B 6 5 the top B actions will always be in {1, 2, 3, 4, 5}.
2

We see in Fig. 8.1 that FPML does not

outperform the greedy algorithms on this task.
3

1
All FPML instances use geometric resampling without explicit exploration.

2
The purpose of the intermediate actions {6, 7, 8, 9, 10} is to ensure that perturbations to the leaderboard don’t

result in ‘accidentally better’ action sets.

3
It is perhaps surprising that OG and OGhybriddoes not clearly outperform FPML in this setting.

Table 8.1: Reward distributions for round types I and II in the first synthetic environment; Beta
distributions are parameterized by mean and variance, not shape.

Action I-rounds II-rounds Resulting mean

Actions 1 to 5 Beta(0.6, 0.01) Always 0 0.3
Actions 6 to 10 Beta(0.4, 0.01) Always 0 0.2
Actions 11 to 15 Always 0 Beta(0.2, 0.01) 0.1
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Figure 8.1: Normalized scores for various combinations of FPML and online greedy algorithms over
300 rounds from the first first synthetic environment, averaged over 50 trials. Error bars are 95%
confidence intervals for a single observation. Note also the large gap in this environment between
the performance of the best-in-hindsight action sets and the top B individual actions, as designed.

8.2 An anticorrelated environment with no reward gap

The second environment is one where (approximately) S⋆ = Sgreedy = Stop; greediness is good but

no better than picking the top B actions. There are now |A | = 10 available actions and rewards

are distributed according to Table 8.2; as before the best action subsets for this environment

will be evenly split between {1, 2, 3, 4, 5} and {6, 7, 8, 9, 10}, but now the leaderboard looks like

1, 6, 2, 7, 3, 8, 4, 9, 5, 10 in expectation, so picking the top B actions will automatically result in a

well-balanced set covering both round types. For this reason, although the two groups of actions

here are highly anticorrelated, we expect errB to be small in this example and thus for FPML to

do well relative to the greedy algorithms.

Section 8.2 shows the results for 50 trials of 300 rounds on this environment, and Section 8.2

shows the same after introducing a regime change halfway through each trial — speci�cally, the

means of the Beta distributions gradually reverse in order
4
, so that actions 1 through 5 eventually

have means 0.2, … , 0.6 respectively on I-rounds and similarly for actions 6 through 10 on II-

rounds. In both cases, the FPML algorithm outperforms the others, particularly for larger B.

8.3 A correlated environment

Another case where S⋆ = Sgreedy = Stop is when there are no groups of anticorrelated actions, and

so the gap between the best set and the top of the leaderboard is trivially small. Suppose now

there are |A | = 10 available actions only one round type, with rewards distributed according to

Table 8.3; the results on this environment are shown in Fig. 8.4. Predictably, we again see FPML
outperforming the other algorithms.

4
This is achieved by deciding which of the two regimes to use at each round by sampling a Bernoulli random

variable with mean sigmoidal in the round number.
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Table 8.2: Reward distributions for round types I and II in the second synthetic environment.

Action I-rounds II-rounds Resulting mean

1 Beta(0.6, 0.01) Always 0 0.3
2 Beta(0.5, 0.01) Always 0 0.25
3 Beta(0.4, 0.01) Always 0 0.2
4 Beta(0.3, 0.01) Always 0 0.15
5 Beta(0.2, 0.01) Always 0 0.1
6 Always 0 Beta(0.6, 0.01) 0.3
7 Always 0 Beta(0.5, 0.01) 0.25
8 Always 0 Beta(0.4, 0.01) 0.2
9 Always 0 Beta(0.3, 0.01) 0.15
10 Always 0 Beta(0.2, 0.01) 0.1

Figure 8.2: Normalized scores for various combinations of FPML and online greedy algorithms in
the second synthetic environment. Error bars are 95% confidence intervals for a single observation.

Table 8.3: Reward distributions in the third synthetic environment.

Action Distribution

1 Beta(0.6, 0.01)
2 Beta(0.55, 0.01)
3 Beta(0.5, 0.01)
4 Beta(0.45, 0.01)
5 Beta(0.4, 0.01)
6 Beta(0.35, 0.01)
7 Beta(0.3, 0.01)
8 Beta(0.25, 0.01)
9 Beta(0.2, 0.01)
10 Beta(0.15, 0.01)
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Figure 8.3: Normalized scores for various combinations of FPML and online greedy algorithms in
the second synthetic environment with the added regime change halfway through. Error bars are 95%
confidence intervals for a single observation. Note in the this version (with the regime change) the
gap between the best action set and the top of the leaderboard is large; but within each regime it
will be small. This hints at FPML’s ability to identify local leaderboards better than other algorithms.

Figure 8.4: Normalized scores for various combinations of FPML and online greedy algorithms in
the third synthetic environment. Error bars are 95% confidence intervals for a single observation.
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Table 8.4: Rewards in the fourth synthetic environment, for some parameter � ∈ (0, 1/2), run for
300 rounds and averaged over 50 trials.

Action Reward at rounds i ≡ k mod 4 for... Average
k = 1 k = 2 k = 3 k = 4 reward

1 � � 1 1 1/2 + �/2
2 1/2 + � 1/2 + � 0 0 1/4 + �/2
3 0 1 0 1 1/2
4 1 0 1 0 1/2

Table 8.5: Means and standard deviations over 50 trials of rewards for various combinations of
FPML and online greedy algorithms in the fourth synthetic environment, with � = 0.01.

Algorithm Mean StD

Best-in-hindsight 1.000 0
Top-of-leaderboard 1.000 0

FPML 0.964 0.0145
OG with FPML ((B′, K) = 1, 3)) 0.823 0.0200

OG with Exp3 0.799 0.0202

8.4 When is greediness bad?

The fourth environment is one where S⋆ = Stop and this set does better better than Sgreedy; greed-

iness is worse than just picking the top B actions. Suppose there are |A | = 4 available actions

and a �xed budget of B = 3. Rewards are deterministic and listed in Table 8.4 for some parameter

� which we set to 0.01.
5

The top 3 actions are Stop = {1, 3, 4} and this is also the best-in-hindsight

set S⋆, receiving maximum reward 1 at each round. A quick calculation shows that the greedy

choice Sgreedy is either {1, 2, 3} or {1, 2, 4}, though, and either of these sets receive an average

maximum reward of 7/8 + �/4, substantially higher. Our empirical results in Table 8.5 show this

gap in practice.

5
Credit to my supervisor for the example idea.
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Chapter 9

Discussion and Future Work

We �nish with a short discussion of our results and their relation to the wider literature, followed

by some suggestions for future research directions and �nally a few personal re�ections on this

project.

9.1 Conclusions

First a brief recap. The centrepiece of this work has been the new ‘Follow the Perturbed Multiple

Leaders’ algorithm we introduced in Chapter 3. We theoretically bounded its 1-regret using a

generalization of the elegant proof technique Kalai and Vempala [KV05] employed on the orig-

inal FPL algorithm, and we bounded the N -regret for problem instances where errN is small

(e.g. the hyperparameter selection application considered in Chapter 7), as well as mentioning

an ine�cient version of the algorithm that handles large errN . We then generalized FPML to

handle partial feedback in two main ways—one uniformly exploring a set number of actions at

each round and make reward estimates based on these, and one using geometric resampling to

make self-exploring reward estimates based on all actions taken—and generalized our earlier the-

oretical 1-regret bounds to these cases. We proved lower bounds on the 1-regret and N -regret

achievable in our problem setting by any algorithm—with the 1-regret bound being matched by

a full feedback version of FPML asymptotically in |A |—before showing new 1-regret bounds for

the online greedy submodular function maximization algorithm OG from Streeter and Golovin

[SG08] and applying FPML to construct a new hybridization OGhybridof this algorithm that im-

proves on these bounds. Finally, we evaluated FPML, OG and OGhybridempirically on an online

hyperparameter selection algorithm choice problem inspired by the 2020 NeurIPS BBO Challenge

as well as in a number of synthetic environments.

The experiments have shown that our FPML algorithm outperforms the existing algorithm OG
on the hyperparameter selection task (with OGhybridalso providing a modest improvement over

OG). As discussed, we think this is due to the problem structure, with small errB; in applications

like this where greediness presents no advantage FPML is the winner. This was con�rmed by our

synthetic-environment experiments. In practice many real-life problems may have this structure,

and FPML will be a better choice in these settings than OG.

Our work thus provides �ve main advantages over anything currently in the literature:

1. ours is the �rst explicit discussion of the multitasking bandit problem in the adversarial

setting and its many applications;
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2. our analysis of budget-B algorithms (both our novel multitasking bandit algorithms and

existing ones in the more general online submodular function maximization setting) using

the N -regret for N < B is new and interesting, and better models the trade-o� of perfor-

mance against resources inherent in many applications;

3. we think our FPML algorithm is an interesting generalization of FPL in its own right and

that our proofs generalizing the proof techniques from Kalai and Vempala [KV05] are of

independent interest;

4. our FPML algorithm achieves better 1-regret than OG in the multitasking bandit setting

(and our OGhybridalgorithm does the same in the more general submodular function maxi-

mization setting), providing better guarantees on the performance increase to expect when

increasing your available resources;

5. the FPML algorithm has superior absolute performance to OG in many practical settings

where greediness isn’t important.

Indeed, as well as several of these results being of theoretical interest, we believe FPML is an

important practical step towards performant ways of managing limited time/computational re-

sources in lifelong learning settings (and others) when executing a stream of tasks with access

to a large repertoire of problem-solving techniques.

9.2 Future work

Some possible future directions—both theoretical and practical—are given in Table 9.1, some of

which we have played with during the course of this project but not included in the �nal report.

9.3 Personal re�ections

I’ve very much enjoyed working on this project over the last nine months. Delving into the vast

theory of multi-armed bandits has been fascinating, and the theoretical parts of the project have

been a good �t for my mathematical background. In particular, I have found it very rewarding

to be able to work both on theoretical proofs—using a good selection of techniques/results from

probability theory and statistics—and on practical implementations in Python, and to see the

two complement each other. It has also been a pleasure to collaborate with my supervisor on

the project—to �esh out the details of his ideas and come up with new ones of my own—an

opportunity for which I’m very grateful.

The path has not been without obstacles. At times it’s been challenging to �t in work on this

project alongside the Oxford workload, and in particular to ‘refocus’ after each extended in-

terruption; relatedly, I’ve de�nitely grappled with limiting time spent on stubborn details and

forcing myself to move on and keep the big picture in mind. On occasion, spending several

days/weeks ironing out a proof that ends up not working (e.g. several ideas for lower bounds)

has been frustrating, though of course to be expected. Another more subtle challenge has been

forming strong accurate idea-guiding intuitions about the problems and algorithms at hand,

which I’ve found harder than I expected to, as well as maintaining consistent belief in the impor-

tance/relevance of the problem at times (for which returning to concrete applications has proven

helpful).

Several take-aways come to mind. Firstly, I’ve learnt not to underestimate the time it can take

to work out details for arguments whose veracity you doubt—and that in these situations rigour

deserves much less priority than I’m used to a�ording it, forming more of a ‘last step’. Secondly, I
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Table 9.1: Possible future research directions.

• The regret analyses in this work for the first time give theoretical expectations on the in-
crease in performance gained from increasing your per-round action budget B. A natural
next step is to provide algorithms that dynamically select the best action budget B for the
problem, e.g. when B represents time to spend on each round. For example, if increasing
B provides only a small performance boost then sticking with smaller B is likely optimal,
but if a small increase in B causes a great increase in performance then a larger choice is
suitable. This could be a periodical update of B or a new choice at each round.

• Related to the above, a regret analysis when executing with arbitrary different action bud-
gets per round would be relevant to settings where your available resources are decided
for you on the fly at each round.

• Work on tighter lower bounds (in T , especially) will be important to better understanding
the dynamics of this problem.

• It would be interesting to develop an efficient approximation algorithm using the ‘super-
actions’ technique mentioned in Chapter 3: this may offer advantages when competing
against large fixed action sets or in some practical settings where FPML is sub-optimal.

• A closer comparison of the algorithms in this work to the algorithm for the stochastic K -
max problem from Chen et al. [Che+16] would be interesting.

• A generalization of FPML to the more general adversarial combinatorial bandit setting
(with max as the reward function, or potentially something more general) may be possi-
ble.

• An extension of FPML to the general ‘experts’ case where we have access to a number of
experts who each recommend an action to be taken at each round.
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now better appreciate the bene�ts of (a) fully deciding on the target problem and understanding

the current literature before trying to solve something, and (b) then focussing on one thing

at a time, to avoid losing time to ‘switching’ between mental tree branches. Thirdly, I have

slightly recalibrated my future research interests: if anything, this project (along with other

work this year) has taught me that I’m more motivated when developing and experimenting with

application-motivated new techniques than when �nding and proving theoretical guarantees,

and my interests have thus shifted a little accordingly.
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Appendix A

Full Proofs

Proof of Lemma 3.4

Proof. Now that " < ∞, the random exponential permutations (pt (a))a∈A ,t∈[T ] are not neces-

sarily zero. As in Kalai and Vempala [KV05], assume w.l.o.g. that p1(a) = p2(a) = ⋯ = pT (a)
for each a ∈ A ; by linearity of expectation, this does not change the expected regret of the

algorithm summed across rounds. Write p ∶= p1. Moreover, again following Kalai and Vem-

pala [KV05], imagine instead of adding perturbations that there is a ‘round zero’ with rewards

r0(a) ∶= p(a) ∀a ∈ A and that the algorithm uses for its calculations cumulative rewards

R⋆t (⋅) ∶= ∑t
s=0 rs(⋅) including these ‘random initializations’. This is of course numerically equiv-

alent to adding the same perturbation at each round:

R⋆t (a) =
t

∑
s=0

rt (a) = r0(a) + Rt (a) = p(a) + Rt (a) = pt+1(a) + Rt (a) = R̃t (a). (A.1)

We proceed by adapting the proof of Lemma 3.3. Write now mt = maxa∈A R⋆t (a) for each

t ∈ [T ], so in particular now mT = R⋆T (ã⋆) = RT (ã⋆) + p(ã⋆), where ã⋆ ∶= argmaxa∈A R⋆T (a).
Including the random initializations when de�ning (E )t∈[T ] and I , the proof of Lemma 3.3

then applies without modi�cation up to showing that

T
∑
t=1

rt (St ) > mT − m0 − |I |. (A.2)

With the new de�nitions of mt , though, this lower bound now evaluates to

RT (ã⋆) + p(ã⋆) − max
a∈A

p(a) − |I | (A.3)

and by de�nition of ã⋆, then,

T
∑
t=1

rt (St ) > RT (a⋆) + p(a⋆) − max
a∈A

p(a) − |I | (A.4)

(where a⋆ = argmaxa∈A RT (a)). This motivates us to upper-bound E[maxa∈A p(a) − p(a⋆)].
But this is simple: E[p(a⋆)] = 1/" as for any �xed action, and maxa∈A p(a) is the maximum of

|A | i.i.d. Exp(") random variables, so has expectation at most (1 + ln |A |)/" as argued in Kalai
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and Vempala [KV05]. Thus

E
[

T
∑
t=1

rt (St )]
> E[RT (a⋆)] −

ln |A |
"

− E[|I |] (A.5)

which rearranges to the result.

Proof of Proposition 3.5

We’ll need a pure-probabilistic lemma:

Lemma A.1. For some �nite index set I , let (Xi)i∈I be independent real-valued random variables
and de�ne X ⊆ I to be the indices of the smallest m of them. Then conditional on the ran-
dom variables X and (Xi)i∈X , the remaining random variables (Xj)j∈I ⧵X are independent with
marginal distributions

�Xj (⋅ ∣ �(X , (Xi)i∈X )) = �Xj (⋅ ∣ {Xj > max
i∈X

Xi}), j ∈ I ⧵ X . (A.6)

Proof. We prove this in the case that (Xi)i∈I are absolutely continuous, with densities (fi)i∈I
respectively. (Note the lemma still holds in the general case.) Assume w.l.o.g. that I = [n]
for n ∈ ℕ. For C ⊆ [n] of size m, write C = {i1, … , im} and Cc = {im+1, … , in}; then for any

x1, … , xn ∈ ℝ the relevant conditional joint density is

fXim+1 ,…,Xn ∣Xi1 ,…,Xin (xim+1 , … , xin ∣ xi1 , … , xim , {X = C}) (A.7)

=
fX1,…,Xn (x1, … , xn ∣ {X = C})
fXi1 ,…,Xim (xi1 , … , xim ∣ {X = C})

(A.8)

∝ fX1,…,Xn (x1, … , xn ∣ {X = C}) (A.9)

= fX1,…,Xn (x1, … , xn ∣ {Xj > max
i∈C

Xi ∀j ∉ C}) (A.10)

=
fX1,…,Xn (x1, … , xn)

ℙ(Xj > maxi∈C Xi ∀j ∉ C)
1xj>maxi∈C xi ∀j∉C) (A.11)

=
fX1,…,Xn (x1, … , xn)

∫x ℙ(Xj > x ∀j ∉ C)fmaxi∈C Xi (x) dx
1xj>maxi∈C xi ∀j∉C) (A.12)

=
fX1(x1) ⋯ fXn (xn)

∫x ℙ(Xim+1 > x)⋯ℙ(Xin > x)fmaxi∈C Xi (x) dx
1xj>maxi∈C xi ∀j∉C) by independence (A.13)

∝
(

fXim+1 (xim+1)
ℙ(Xim+1 > maxi∈C Xi)

1xim+1>maxi∈C xi)
⋯(

fXin (xin )
ℙ(Xin > maxi∈C Xi)

1xin>maxi∈C xi) (A.14)

= fXim+1 (xim+1 ∣ {Xim+1 > max
i∈C

Xi})⋯ fXin (xin ∣ {Xin > max
i∈C

Xi}) (A.15)

= ∏
j∉C

fXj (xj ∣ {Xj > max
i∈C

Xi}) (A.16)

where proportionality is in xim+1 , … , xin . The result follows.

Proof of Proposition 3.5

Proof. We will argue that E[|I |] 6 T (1 − e−")B (where I is as de�ned in Lemma 3.4). As in

the proof of Lemma 3.4, assume w.l.o.g. that instead of perturbations there is a ‘round zero’
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with random i.i.d. Exp(") rewards (p(a))a∈A . Fix a round t ∈ [T ] and de�ne Et as before; so

Et = {∃a′ ∈ A ⧵ St ∶ ∀a ∈ St , a′ overtakes a at round t} (A.17)

= ⋃
a′∈A ⧵St

⋂
a∈St

{a′ overtakes a at round t} (A.18)

⊆ ⋂
a∈St

⋃
a′∈A ⧵St

{a′ overtakes a at round t} = ⋂
a∈St

{a overtaken by some a′ ∉ St}. (A.19)

Let V represent the cumulative reward (including round zero) of the (B + 1)th best action; so

V = maxa∈A ⧵St R⋆t−1(a). For each action a ∈ A , then, a ∈ St i� R⋆t−1(a) > V .
1

De�ne the event

Ea ∶= {R⋆t−1(a) > V + 1}; if this holds then then we know for sure not only that a ∈ St but that

action a must remain ahead of every action a′ ∉ St after this round, since a must have been

ahead of every such action by at least 1 already. That is,

{a overtaken by some a′ ∉ St} ⊆ Eca. (A.20)

Let Gt ∶= �(St , (R⋆t−1(a))a∈St ) be the �-algebra generated by the random set St and the current

cumulative rewards of the actions in it. So we have

ℙ (Et ∣ Gt) 6 ℙ
(
⋂
a∈St

{a overtaken by some a′ ∉ St} ∣ Gt)
(A.21)

6 ℙ
(
⋂
a∈C

Eca ∣ Gt)
(A.22)

= ℙ
(
⋂
a∈St

{R⋆t−1(a) < V + 1} ∣ Gt)
. (A.23)

But, since V = maxa∈A ⧵St R⋆t−1(a), applying Lemma A.1 with I = A , X = St and (Xi)i∈I =
(R⋆t−1(a))a∈A gives us that

ℙ
(
⋂
a∈St

{R⋆t−1(a) < V + 1} ∣ Gt)
= ∏

a∈St
ℙ (R⋆t−1(a) < V + 1 ∣ R⋆t−1(a) > V) . (A.24)

By the memoryless property of the exponential distribution, each term here just becomes

1 − ℙ (p(a) > V − Rt−1(a) + 1 ∣ p(a) > V − Rt−1(a)) 6 1 − ℙ(p(a) > 1) = 1 − e−" . (A.25)

Thus ℙ(Et ∣ Gt ) 6 (1−e−")B. Since this expression is deterministic and so trivially independent

from the �-algebra Gt , this immediately implies that ℙ(Et ) 6 (1 − e−")B.

The result then follows from Lemma 3.4 since E[|I |] = ∑T
t=1 ℙ(Et ) 6 T (1 − e−")B.

Proof of Proposition 4.1

Proof. We adapt the proofs of Lemma 3.4 and Proposition 3.5. As in those proofs, assume

w.l.o.g. that instead of perturbations there is a ‘round zero’ with i.i.d. Exp(") random rewards

(p(a))a∈A . De�ne the �-algebra F0 ∶= �((p(a))a∈A ) and extend all subsequent �-algebras in

the �ltration (Ft )t∈[T ] to contain F0.

1
For the analysis that follows, we take the rewards at every non-zero round to be deterministic, so the only source

of randomness is the round zero rewards (p(a))a∈A .
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Writing R̂t (⋅) ∶= ∑t
s=1 r̂s(⋅) for cumulative estimated reward and R̂⋆t (⋅) ∶= ∑t

s=0 r̂s(⋅) = R̂t (⋅) + p(⋅)
for the same but including the ‘round zero’ random initializations, de�ne mt ∶= maxa∈A R̂⋆t (a)
for each t ∈ [T ]. In particular then

E[mT ∣ F0] = E [maxa∈A
R̂⋆t (a) ∣ F0] > max

a∈A
E [R̂

⋆
t (a) ∣ F0] (A.26)

= max
a∈A (

p(a) +
T
∑
t=1

E[r̂t (a) ∣ F0])
(A.27)

= max
a∈A (

p(a) +
T
∑
t=1

rt (a))
= RT (ã⋆) + p(ã⋆) (A.28)

where ã⋆ ∶= argmaxa∈A R⋆T (a). The initial step here follows from Jensen’s inequality (as the

max function is convex in its inputs).

Similarly to in Lemma 3.3, for each t let a⋆t ∶= argmaxa∈A R̂⋆t−1(a) and de�ne the event Et =
{a⋆t+1 ∉ St}.

Fix t and assume ¬Et . Action a⋆t+1 has estimated reward

r̂t (a⋆t+1) = R̂t (a
⋆
t+1) − R̂t−1(a

⋆
t+1) = mt − R̂t−1(a⋆t+1) > mt − mt−1 (A.29)

by de�nition of mt , mt−1, so as we’re assuming a⋆t+1 ∈ St we get that

rt (St ) = max
a∈St

rt (a) > rt (a⋆t+1) = E[r̂t (a⋆t+1) ∣ F0] > E[mt − mt−1 ∣ F0]. (A.30)

So, writing I ∶= {t ∈ [T ] ∶ Et holds}, the total actual reward of the algorithm is

T
∑
t=1

rt (St ) > ∑
t∈I c

rt (St ) > ∑
t∈I c

E[mt − mt−1 ∣ F0] (A.31)

=
T
∑
t=1

E[mt − mt−1 ∣ F0] − ∑
t∈I

E[mt − mt−1 ∣ F0] (A.32)

= E[mT ∣ F0] − m0 − ∑
t∈I

E[mt − mt−1 ∣ F0]. (A.33)

But the increase in the highest estimated (perturbed) reward from one round to the next is at

most � , by de�nition of the estimates; so

T
∑
t=1

rt (St ) > E[mT ∣ F0] − m0 − �|I | (A.34)

= RT (ã⋆) + p(ã⋆) − max
a∈A

p(a) − �|I | (A.35)

> RT (a⋆) + p(a⋆) − max
a∈A

p(a) − �|I | (A.36)

(where a⋆ ∶= argmaxa∈A RT (a) is the actual best action).

Taking expectations and upper-bounding E[maxa∈A p(a) − p(a⋆)] as in Lemma 3.4, then,

E
[

T
∑
t=1

rt (St )]
> E[RT (a⋆)] −

ln |A |
"

− �E[|I |]; (A.37)
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so the expected 1-regret of the algorithm is E[R1] 6 ln |A |
" + �E[|I |].

It remains to upper-bound E[|I |]. We proceed very similarly to as in Proposition 3.5.

Fix t ∈ [T ] and let V ∶= maxa∈A ⧵St R̂⋆t−1(a). So for any a, {a ∈ St} = {R̂⋆t−1(a) > V}. De�ne

Ea ∶= {R̂⋆t−1(a) > V + � + �}; if this holds then a must have been ahead of every action a′ ∉ St
by at least � + � and therefore cannot be overtaken by any such action, since the estimated

rewards are all bounded by [−�, �]. So

{a overtaken by some a′ ∉ St} ⊆ Eca. (A.38)

The argument in Proposition 3.5 then applies exactly, simply replacing 1 with � + � where

necessary to conform to the new de�nition of Ea. We get that ℙ(Et ) 6 (1 − e−"(�+�))B for each

t , and so E[|I |] = ∑T
t=1 ℙ(Et ) 6 T (1 − e−"(�+�))B.

Proof of Lemma 4.4

Proof. Fix t and a and write K = min(Zt,a, M). De�ne the event

E ∶= {a ∈ St}; (A.39)

then using the de�nition of r̂t,a, we have that

E[1 − r̂t (a) ∣ Ft−1] = E[(1 − rt (a))min(Zt,a, M)1E + 01Ec ∣ Ft−1] (A.40)

= (1 − rt (a))E[K1E ∣ Ft−1] (A.41)

= (1 − rt (a))ℙ(E ∣ Ft−1)E[K ∣ Ft−1] (A.42)

= (1 − rt (a))qt,aE[K ∣ Ft−1] (A.43)

where the penultimate line followed from the conditional independence of E and Zt,a given

Ft−1 (by de�nition of Zt,a). But the inner expectation is just

E[K ∣ Ft−1] =
M
∑
k=1

kℙ(K = k ∣ Ft−1) (A.44)

=
M−1
∑
k=1

kℙ(Zt,a = k ∣ Ft−1) + Mℙ(Zt,a > M ∣ Ft−1) (A.45)

=
M−1
∑
k=1

k(1 − qt,a)k−1qt,a + M(1 − qt,a)M−1 (A.46)

since conditional on Ft−1, Zt,a has distribution Geom(qt,a).
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In general sums of the form on the left have value

n
∑
k=1

krk−1(1 − r) =
n
∑
k=1

krk−1 −
n
∑
k=1
(k + 1)rk +

n
∑
k=1

rk (A.47)

=
d
dr

n
∑
k=1

rk −
d
dr

n
∑
k=1

rk+1 +
n
∑
k=1

rk (A.48)

=
d
dr

r(1 − rn)
1 − r

−
d
dr

r2(1 − rn)
1 − r

+
r(1 − rn)
1 − r

(A.49)

=
nrn+1 − (n + 1)rn + 1

(1 − r)2
(A.50)

−
(n + 1)rn+2 − (n + 2)rn+1 − r2 + 2r

(1 − r)2
+
r(1 − rn)
1 − r

(A.51)

= 1 − (n + 1)rn +
r − rn+1

1 − r
(A.52)

Thus we get

E[K ∣ Ft−1] = 1 +
(1 − qt,a) − (1 − qt,a)M

qt,a
=
1 − (1 − qt,a)M

qt,a
. (A.53)

Combining this with Eq. (A.43) gives the result.

Proof of Proposition 4.5

Proof. We closely adapt the proof of Proposition 4.1. Note that the estimated rewards are

always overestimates, so the argument that E[mT ∣ F0] > RT (ã⋆)+p(ã⋆) still applies. However,

the bound on the algorithm regret at rounds t where ¬Et holds is now slightly di�erent: we

can only argue that

rt (St ) > rt (a⋆t+1) = E[r̂t (a⋆t+1) ∣ F0] − (1 − qt,a⋆t+1)
M (1 − rt (a⋆t+1)) (A.54)

> E[mt − mt−1 ∣ F0] − (1 − qt,a⋆t+1)
M . (A.55)

The last term here satis�es

E[(1 − qt,a⋆t+1)
M ∣ Ft−1] = ∑

a∈A
ℙ(a = a⋆t+1 ∣ Ft−1)(1 − qt,a)M (A.56)

6 ∑
a∈A

qt,a(1 − qt,a)M 6 ∑
a∈A

qt,ae−qt,aM , (A.57)

where we used that ℙ(a = a⋆t+1) 6 ℙ(a ∈ St ) = qt,a (since a⋆t+1 ∈ St ) and the approximation

1 − x 6 e−x .

Noting that the functon q ↦ qe−qM is maximized at q = 1/M , then,

E[(1 − qt,a(1)t+1)
M ∣ Ft−1] 6 ∑

a∈A

1
M
e−

1
MM =

|A |
eM

. (A.58)

Following through the proof of Proposition 4.1, then, and noting that the estimates r̂i(a) are
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bounded by [1 − M, 1] for all i, a, reveals that

E
[

T
∑
t=1

rt (St )]
> E[RT (a⋆)] −

ln |A |
"

− T ⋅
|A |
eM

− 1E[|I |] (A.59)

and the result follows quickly from the same argument bounding E[|I |] (using � = M −1, � =
1).

The second part of the theorem follows from the �rst part using the approximation 1−x 6 e−x ;

the values of " and M were chosen by setting the three terms approximately equal.

Proof of Lemma 5.3

Proof. Let X1, … , Xk be i.i.d. Bin(n, 1/n) r.v.s and de�ne Mk ∶= maxi=1,…,k Xi . For large n, it is a

standard result that each of these are well-approximated by a Po(1) distribution. So consider

the limiting case, where the Xi are exactly Poisson-distributed.

De�ne a continuous extension F (x) = Q(x, 1) of the Poisson distribution function (hereQ is the

regularized upper incomplete Gamma function); we will assume the Xi follow this continuous

distribution, observing that this doesn’t change the asymptotic behaviour.

De�ne Ak such that F (Ak) = 1 − 1/k; so limk→∞ Ak = ∞. Noting that limx→∞
1−F(x+")
1−F(x) = 0 for

any " > 0 (this is easily shown and veri�able numerically),

k(1 − F(Ak + ")) =
1 − F(Ak + ")
1 − F(Ak)

→ 0 (A.60)

and

k(1 − F(Ak − ")) =
1 − F(Ak − ")
1 − F(Ak)

→ ∞ (A.61)

for all " > 0 as k → ∞. Since 1 − F(x) → 0 as x → ∞, asymptotically we have log F (Ak ± ") ∼
−(1 − F(Ak ± ")) (by the series expansion of log(1 − x)), so it follows from the above that

k log F (Ak + ") → 0, k log F (Ak − ") → −∞ (A.62)

for all " > 0. Exponentiating, therefore, F (Ak + ")k → 1 and F (Ak − ")k → 0; since F k is the

distribution function of Mk , it follows that

ℙ(|Mk − Ak | 6 ") = F (Ak + ")k − F(Ak − ")k → 1 (A.63)

for any ", i.e. Mk concentrates around Ak . Asymptotically, then, E[Mk] = Θ(Ak).

It remains to �nd Ak . The lower incomplete Gamma function has a �rst-order approximation


(a, z) ∼ zaΓ(a)e−z/Γ(1 + a) for large a, so

1 − F(x) = 1 − Q(x, 1) =

 (x, 1)
Γ(x)

∼
1

eΓ(x + 1)
∼

ex−1
√
2�xx+1/2

=
e

√
2�
ex−(x+1/2) log x (A.64)

by Stirling’s approximation; thus by de�nition of Ak , 1/k ∼ eAk−(Ak+1/2) logAk+const, i.e.

Ak log Ak − Ak = Θ(log k). (A.65)

When the equality is exact this solves to Ak = eW(log k/e)+1
where W is the principal branch

of the Lambert product logarithm. Since asymptotically W(x) = Θ(log x − log log x), then, we
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have

Ak = Θ(elog(log k)−log log(log k)) = Θ(
log k

log log k)
. (A.66)

Proof of Lemma 6.5

Proof. For each j ∈ ℕ write Δj ∶= f (S⋆B0) − f (Ḡj). By Fact 2 from Streeter and Golovin [SG08],

for any j ∈ ℕ, b > 0 and S ∈ S with � (S) 6 b,

f (S) 6 f (Ḡj) + b ⋅ (sj + "j), (A.67)

where

sj ∶= max
(v,� )∈V ×(0,∞)

f (Ḡj ⊕ ⟨(n, � )⟩) − f (Ḡj)
�

=
f (Ḡj ⊕ ḡj) − f (Ḡj)

�̄j
=
f (Ḡj+1) − f (Ḡj)

�̄j
, (A.68)

so in particular for any j

f (S⋆B0) = max
S∈S ∶�(S)=B0

f (S) 6 f (Ĝj) + B0 ⋅ (sj + "j) (A.69)

= f (Ĝj) + B0(
f (Ḡj+1) − f (Ḡj)

�̄j
+ "j) (A.70)

= f (Ĝj) + B0(
Δj − Δj+1

�̄j
+ "j) , (A.71)

giving Δj 6 B0 (
Δj−Δj+1

�̄j + "j).

Rearranging gives Δj+1 6 Δj (1 −
�̄j
B0) + �̄j"j for each j, and unrolling this inequality and using

that 1 − �̄j
B0 < 1 ∀j as in Streeter and Golovin [SG08] gives us

ΔL+1 6 Δ1(

L
∏
j=1

1 −
�̄j
B0)

+
L
∑
j=1

�̄j"j . (A.72)

By de�nition B′ = ∑L
j=1 �̄j"j , and maximizing the product above subject to this constraint results

in �̄j = B′
L for all j. Thus

L
∏
j=1

1 −
�̄j
B0

6
L

∏
j=1

1 −
B′/L
B0

= (1 +
(−B′/B0)

L )

L

< e−B
′/B0

(A.73)

and so

f (S⋆B0) − f (ḠL+1) = ΔL+1 < Δ1e
−T1/T0 +

L
∑
j=1

�̄j"j 6 f (S⋆B0)e
−B′/B0 +

L
∑
j=1

�̄j"j , (A.74)

giving f (Ḡ⟨T1⟩) = f (ḠL+1) > (1 − e−B
′/B0)f (S⋆B0) − ∑L

j=1 �̄j"j as required.

Proof of Proposition 6.11

A lemma is needed:

Lemma A.2. Let f ∶ S → [0, 1] be a job satisfying Assumption 6.10. Then for any schedule
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S ∈ S and any sub-schedule S′ of S (i.e. a schedule S′ ∈ S whose actions appear in order but
not necessarily consecutively in S),

f (S) > f (S′). (A.75)

Proof. Immediate from monotonicity, Assumption 6.10 and induction.

Proof of Proposition 6.11. Suppose for each i ∈ [K] there is a �ctional experts algorithm (classi-

cal full feedback multi-armed bandit algorithm) Ei which picks a⋆t,i at each round t , and consider

a hypothetical instance of the standard algorithm OG run with time allowance K and these

�ctional experts algorithms E1, … ,EK as subroutines.

Since K = Ω(N log T ) (by our assumption that B = Ω(NB′ log T )), by Theorem 6.9 the N -regret

of our OG instance is upper-bounded in expectation by ∑K
i=1 R1(Ei).

But the payo� received by this OG instance at each round t is f (⟨a⋆t,1, … , a⋆t,K⟩), which by

Lemma A.2 is upper-bounded by f (St ), the payo� of OGhybrid, since the actions a⋆t,1, … , a⋆t,K
appear in order in St . So the N -regret RN of OGhybrid must be at most that of our �ctional

OG instance, giving the upper bound

E[RN ] 6
K
∑
i=1

E[R1(Ei)]. (A.76)

It remains to argue how large each of the regret of each of these ‘�ctional’ experts algorithms

Ei is. Writing a⋆⋆i = argmaxa∈A ∑T
t=1 r

(i)
t (a) for the best-in-hindsight �xed action under the

rewards passed to Ei , the regret incurred by Ei is therefore

R1(Ei) =
T
∑
t=1

r (i)t (a
⋆⋆
i ) −

T
∑
t=1

r (i)t (a
⋆
t,i) (A.77)

=
T
∑
t=1

r (i)t (a
⋆⋆
i ) −

T
∑
t=1

max
j∈[B′]

r (i)t (a
((i−1)B′+j)
t ) = R1(Bi). (A.78)

where R1(Bi) is the 1-regret incurred by multitasking bandit algorithm Bi . So by Eq. (A.76)

E[RN ] 6
K
∑
i=1

E[R1(Bi)] = KE[R1(B)] =
BE[R1(B)]

B′
. (A.79)
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Appendix B

Further Empirical Results

B.1 Choice of perturbation rate

The experiments in Chapter 7 and Chapter 8 were run with the theoretically-derived values for

the perturbation rate ", which guarantee small asymptotic regret growth but may not always

be optimal; here we investigate various other choices of " in the black-box optimization setting

from Chapter 7.

Tables B.1 and B.2 summarize the FPML1
performance scores for a range of values of ". The

perturbation rate makes less di�erence than might be expected, though for small B in particular

high perturbation rates predictably causes greater variance in outcome. A good choice in general

for this application seems to be " = 0.3.

B.2 Choice of exploration rate

We observed in Chapter 7 that adding probabilistic exploration with 
 = 0.2 to the FPML algo-

rithm with geometric resampling appeared to decrease the performance of the algorithm versus

having no explicit exploration at all. Here we examine this more closely, looking at the empirical

performance with various �xed choices of 
 .

Tables B.3 and B.4 describe the FPML performance scores for 
 = {0.0, 0.1, … , 1.0}. As one

would expect from our previous observation, the performance is always highest with 
 = 0 (no

explicit exploration), tapering o� towards 
 = 1 (entirely uniformly random action choices at

each round). The e�ect of 
 on score variance seems to be more unpredictable, with a slight

tendency for values of 
 closer to 0.5 to cause higher variance.

1
In both Appendix B.1 and Appendix B.2 we use the partial feedback variant of FPML with geometric resampling

and no explicit exploration.

58



TableB.1:Meannormalized validation scores of FPMLwith resampling andprobabilistic exploration
over black-box optimizers for various different perturbation rates (50 trials).

Number of optimizers in parallel (B)

1 2 3 4 5 6

" = 0.001 0.349 0.536 0.663 0.739 0.799 0.846
" = 0.003 0.359 0.561 0.674 0.746 0.808 0.850
" = 0.01 0.376 0.588 0.692 0.773 0.828 0.867
" = 0.03 0.403 0.617 0.726 0.802 0.844 0.880
" = 0.1 0.437 0.650 0.754 0.812 0.856 0.886
" = 0.3 0.440 0.655 0.758 0.816 0.861 0.890
" = 1 0.438 0.645 0.746 0.813 0.856 0.888
" = 3 0.416 0.620 0.732 0.800 0.843 0.882
" = 10 0.416 0.611 0.714 0.786 0.841 0.873
" = 30 0.411 0.605 0.707 0.785 0.836 0.868
" = 100 0.434 0.636 0.741 0.805 0.851 0.886
" = 300 0.423 0.611 0.719 0.789 0.844 0.877
" = 1000 0.405 0.610 0.710 0.785 0.835 0.869

Table B.2: Standard deviation of normalized validation scores of FPML with resampling and proba-
bilistic exploration over black-box optimizers for various different perturbation rates (50 trials).

Number of optimizers in parallel (B)

1 2 3 4 5 6

" = 0.001 0.0193 0.0182 0.0158 0.0133 0.0114 0.0115
" = 0.003 0.0157 0.0219 0.0172 0.0130 0.0119 0.0113
" = 0.01 0.0177 0.0198 0.0188 0.0153 0.0109 0.0090
" = 0.03 0.0242 0.0239 0.0211 0.0107 0.0101 0.0072
" = 0.1 0.0211 0.0213 0.0176 0.0152 0.0099 0.0089
" = 0.3 0.0288 0.0169 0.0145 0.0134 0.0090 0.0071
" = 1 0.0267 0.0199 0.0129 0.0115 0.0084 0.0064
" = 3 0.0246 0.0212 0.0150 0.0129 0.0101 0.0079
" = 10 0.0217 0.0179 0.0133 0.0107 0.0089 0.0068
" = 30 0.0177 0.0176 0.0139 0.0130 0.0092 0.0075
" = 100 0.0205 0.0166 0.0172 0.0124 0.0087 0.0064
" = 300 0.0248 0.0176 0.0142 0.0112 0.0088 0.0083
" = 1000 0.0219 0.0189 0.0166 0.0113 0.0072 0.0086
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Table B.3: Mean normalized validation scores of FPML with resampling and probabilistic explo-
ration over black-box optimizers for various different exploration rates (50 trials).

Number of optimizers in parallel (B)

1 2 3 4 5 6


 = 0.0 0.424 0.654 0.754 0.811 0.853 0.888

 = 0.1 0.433 0.654 0.752 0.803 0.846 0.883

 = 0.2 0.422 0.643 0.739 0.795 0.840 0.867

 = 0.3 0.416 0.629 0.730 0.786 0.829 0.856

 = 0.4 0.421 0.620 0.713 0.773 0.819 0.851

 = 0.5 0.405 0.604 0.708 0.767 0.809 0.843

 = 0.6 0.388 0.589 0.693 0.760 0.805 0.837

 = 0.7 0.378 0.577 0.681 0.751 0.799 0.836

 = 0.8 0.363 0.562 0.674 0.744 0.796 0.836

 = 0.9 0.359 0.545 0.667 0.740 0.795 0.838

 = 1.0 0.345 0.536 0.657 0.733 0.798 0.842

Table B.4: Standard deviation of normalized validation scores of FPML with resampling and proba-
bilistic exploration over black-box optimizers for various different exploration rates (50 trials).

Number of optimizers in parallel (B)

1 2 3 4 5 6


 = 0.0 0.0254 0.0191 0.0143 0.0112 0.0092 0.0076

 = 0.1 0.0276 0.0202 0.0168 0.0167 0.0162 0.0099

 = 0.2 0.0246 0.0235 0.0193 0.0157 0.0113 0.0133

 = 0.3 0.0282 0.0287 0.0206 0.0169 0.0136 0.0115

 = 0.4 0.0215 0.0238 0.0211 0.0200 0.0153 0.0114

 = 0.5 0.0212 0.0264 0.0176 0.0157 0.0167 0.0138

 = 0.6 0.0223 0.0229 0.0211 0.0147 0.0124 0.0124

 = 0.7 0.0225 0.0220 0.0196 0.0164 0.0168 0.0112

 = 0.8 0.0163 0.0230 0.0165 0.0182 0.0150 0.0127

 = 0.9 0.0212 0.0189 0.0179 0.0139 0.0133 0.0121

 = 1.0 0.0202 0.0197 0.0150 0.0165 0.0122 0.0096
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