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Chapter 0

Notation

The situations of interest to us in this course start in general with having observed some data x, where
x is a point in X .

Example. Consider a large field of soybean plants. During 7 weeks, each Monday 5 plants are
randomly chosen and the average height recorded.

The data are x = {5, 13, 16, 13, 23, 33, 40}. Here X = R7
+.

We will consider x as the realisation of a random variable X, where the distribution of X is (at least
partly) unknown. Statistical inference is about using x to gain information on the distribution
of X.

We will usually have a class of possible distributions P, parametrised by some parameter θ:

Definition 0.1. A set P = {Pθ : θ ∈ Θ}, where the Pθ are probability distributions on X, is called
a statistical model . Here Θ is the parameter space .

If Pθ is continuous we write f(x, θ) for its probability density function, whereas if Pθ is discrete we write
f(x, θ) for its probability mass function. We write Eθ[·] and Pθ[·] to mean expectations/probabilities
under Pθ; so in Eθ[φ(X)], for example, we take X to have distribution Pθ.

Other possible notations for the same mass/density include pθ(x), p(x, θ), p(x | θ), f(x | θ), Pθ(X = x)
(in the discrete case), and L(θ;x).

Remark (Remark on use of notation). Throughout this course we will freely drift between different
notations for the same objects. This is somewhat intentional, and in most places I follow the notation of
the handwritten notes these are based on, but do forgive me if it is confusing or even sickening at times.
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Chapter 1

Exponential Families

There is one particular class of statistical models that will come up time and time again in our journey,
and to which many of the common distributions belong:

Definition 1.1. A family {f(x; θ) : θ = (θ1, θ2, . . . , θk) ∈ Rk} of pdf/pmfs indexed by θ is a
k-parameter exponential family if the pdf/pmfs f(x; θ) have the form

f(x; θ) = exp

 k∑
i=1

ηi(θ)Ti(x)−B(θ)

h(x),

where the ηi and B are real-valued functions of θ, the Ti are real-valued statistics (i.e. functions
of x), and x can be a vector or a scalar.

Important. In an exponential family f(x; θ) the support of f(x; θ) does not depend on θ. We will write
A for the common support of the f(x; θ).

Example. f(x; θ) = eθ−x1x>θ is not an exponential family.

The ηi and the Ti(x) are called the natural or canonical parameters and observations respectively.

Since for all θ ∈ Θ

1 =

∫
x

f(x; θ) dx = exp(−B(θ))

∫
x

h(x) exp

− k∑
i=1

ηi(θ)Ti(x)

dx

 ,
we can think of exp(−B(θ)) as a normalisation . Observe that B only depends on η(θ).

Often, it is useful to write the model in its canonical form ,

f̃(x; η) = exp

 n∑
i=1

ηiTi(x)−B(η)

h(x).

(Note this is possible even if θ 7→ η is not one-to-one.)

Remark. In general θ and x can be multidimensional.
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Foundations of Statistical Inference 1. Exponential Families

Examples (Common 1-parameter exponential families).

• Poisson distribution. For the Po(θ) distribution, the mass f(x; θ) = e−θθx

x! (x = 0, 1, 2, . . .)
can be written as

f(x; θ) =
1

x!
e−θ+x log θ

= h(x) exp(η(θ)x−B(θ))

with h(x) = 1/x!, η(θ) = log θ, B(θ) = θ and T (x) = x. The natural parameter is log θ.

• Binomial distribution with known number of trials. For the Bin(n, p) distribution,
considering n to be known and p to be the parameter, the mass may be written as

f(x; p) =

(
n

x

)
px(1− p)n−x

=

(
n

x

)
exp

[
x(log p− log(1− p)) + n log(1− p)

]
(for x = 0, 1, . . . , n). So h(x) =

(
n
x

)
, T (x) = x, η(p) = log p

1−p , and B(p) = −n log(1− p).

• Gaussian distribution with known variance. For the N (µ, 1) distribution (for example),
the density may be written as

f(x;µ) =
1√
2π

exp

[
− (x− µ)2

2

]
=

exp
(
−x

2

2

)
√

2π
exp

[
µx− µ2

2

]
,

so h(x) =
exp
(
− x2

2

)
√

2π
, η(µ) = µ, T (x) = x and B(µ) = µ2

2 .

Examples (Common 2-parameter exponential families).

• Gamma distribution. For the Gamma(α, β) distribution, with θ = (α, β), we have mass
function

f(x; θ) =
βαxα−1e−βx

Γ(α)
1x>0

= exp

[
(α− 1)︸ ︷︷ ︸
η1(θ)

log x︸︷︷︸
T1(x)

− β︸︷︷︸
η2(θ)

x︸︷︷︸
T2(x)

− (log(Γ(α))− α log β)︸ ︷︷ ︸
B(θ)

]
1x>0︸ ︷︷ ︸
h(x)

.

• Gaussian distribution. For the N (µ, σ2) distribution, with θ = (µ, σ2), we have mass
function

f(x; θ) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)

= exp

[
− 1

2σ2︸ ︷︷ ︸
η1(θ)

x2︸︷︷︸
T1(x)

+
µ

σ2︸︷︷︸
η2(θ)

x︸︷︷︸
T2(x)

−

(
µ2

2σ2
+

1

2
log(2πσ2)

)
︸ ︷︷ ︸

B(θ)

]
.

Another example of a family which is not exponential is the Cauchy family with location parameter µ:

f(x;µ) =
1

π(1 + (x− µ)2)
.
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Foundations of Statistical Inference 1. Exponential Families

Definition 1.2. If θ = (θ1, θ2, . . . , θd) with d < k and f(x; θ) = h(x) exp
[∑k

i=1 ηi(θ)Ti(x)−B(θ)
]

(where ηi is non-trivial for all i) then the family is said to be curved .

Example. Suppose X1 ∼ N (θ, 1) and X2 ∼ N ( 1
θ , 1) are independent. Their joint distribution has

log-density

log f(x; θ) = − (x1 − θ)2

2
−

(x2 − 1
θ )2

2
+ constant

= x1θ + x2
1

θ
− θ2

2
− θ−2

2
+ terms in (x1, x2) alone,

so that η1 = θ, η2 = 1
θ , T1 = x1 and T2 = x2. This is a (2, 1)-curved family.

Remark. In this course we normally assume exponential families not to be curved, i.e. in the above
notation that k = d.

Observe that η(Θ) = {(θ, 1
θ ) ∈ R2 : θ ∈ R \ {0}} is a one-dimensional manifold — we can see from where

the terminology ‘curved’ originates.

Definition 1.3. The parameter space is defined to be

Θ := {θ :

∫
h(x) exp

[∑n
i=1 ηi(θ)Ti(x)

]
dx <∞},

i.e. the set of θ for which f(x; θ) can be defined.

Definition 1.4. The natural parameter space is defined to be

Ξ := {η = (η1, . . . , ηn) :

∫
h(x) exp

[∑n
i=1 ηiTi(x)

]
dx <∞},

i.e. the set of η for which f(x; η) can be defined (this is really an abuse of notation).

Observe that you can have η(Θ) 6= Ξ (but η(Θ) ⊆ Ξ).

Proposition 1.5. Ξ is convex.

Proof. Take η, η′ ∈ Ξ and let α ∈ (0, 1). Define B(η) = log
∫

exp
(∑

i ηiTi(x)
)
h(x) dx. Then

B(αη + (1− α)η′) = log

∫
exp(α

∑
i ηiTi(x) + (1− α)

∑
i η
′
iTi(x))h(x) dx

= log

∫ [
exp(

∑
i ηiTi(x))h(x)

]α [
exp(

∑
i η
′
iTi(x))h(x)

]1−α
dx

(using h = hαh1−α))

6 log

(∫
exp(

∑
i ηiTi(x))h(x) dx

)α(∫
exp(

∑
i η
′
iTi(x))h(x) dx

)1−α

by Hölder’s inequality

= αB(η) + (1− α)B(η′) <∞.
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Foundations of Statistical Inference 1. Exponential Families

Definition 1.6. A family such that Ξ is open and non-empty is called regular .

Definition 1.7. The functions T1, . . . , Tn are called P-affine independent if for any c0, . . . , cn ∈
R, (

n∑
j=1

cjTj(x) = c0 ∀x ∈ A

)
=⇒

(
cj = 0 for j = 0, . . . , k

)
.

If X ∼ f(x; η), then T = (T1(X), . . . , TN (X)) is a random vector. Let Covη(T ) be its covariance matrix
under f(x; η).

Proposition 1.8. The functions Ti are P-affine independent if Covη(T ) is positive definite for all
η ∈ Ξ.

Proof. Omitted from lectures; see Liero & Zwanzig p.17.

Definition 1.9. A family is strictly k-dimensional if the functions ηi(θ) are linearly independent
and the Ti are P-affine independent.

Example. Suppose X takes values in {1, 2, 3} with P(X = i) = pi for i = 1, 2, 3, so that θ =
(p1, p2, p3). Then

p(x; θ) = p
I1(x)
1 p

I2(x)
2 p

I3(x)
3 where Ii(x) := 1x=i

= exp(I1(x) log(p1) + I2(x) log(p2) + I3(x) log(p3)),

so X belongs to a 3-parameter exponential family, but I1(x) + I2(x) + I3(x) = 1 so it is not strictly
3-dimensional. Indeed,

p(x; θ) = exp

(
I1(x) log

(
p1

1− (p1 + p2)

)
+ I2(x) log

(
p2

1− (p1 + p2)

)
+ log(p3)

)

so it is a strictly 2-dimensional exponential family.

Theorem 1.10. The natural parameter space Ξ of a strictly k-parameter exponential family is
convex and contains a non-empty k-dimensional interval.

Proof. Omitted.

Write T = (T1, . . . , Tk) for the vector of natural observations.

Theorem 1.11. Let P be a strictly k-parameter exponential family with natural parameter space
Ξ. Then for all η ∈ Int(Ξ):

(a) all moments of T (with respect to f(x; η)) exist, i.e.

Eη[|T (X)|k] <∞ for all k > 1;

(b) Eη[Ti(X)] =
∂

∂ηi
B(η) ∀i; and

(c) Covη(Ti, Tj) =
∂2

∂ηi∂ηj
B(η) ∀i, j.
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Foundations of Statistical Inference 1. Exponential Families

Proof. See handwritten notes (lecture 1).
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Chapter 2

Sufficiency and Factorisation

We may often be interested in summarising a set of data without losing any information about the
parameter we’re trying to estimate. A statistic that does this is said to be sufficient :

Definition 2.1. Suppose X ∼ f(x; θ) for some parameter θ.

A statistic T (X) is a function of the data which does not depend on θ.

A statistic T (X) is said to be sufficient for θ if the conditional distribution of X given T does not
depend on θ. That is,

f(x | t, θ) = f(x | t).

Remark. In particular, this means that for any function g the map θ 7→ Eθ[g(X) | T = t] is constant.

We can think of a sufficient statistic as ‘wrapping up’ all the information there is about θ somehow.

Example. Let X1, . . . , Xn be independent Ber(p) random variables, so that P(X = 1) = p and
P(X = 0) = 1 − p, and let T =

∑n
i=1Xi, so that T ∼ Bin(n, p). Then, writing X = (X1, . . . , Xn),

for any x ∈ {0, 1}n and t ∈ {0, . . . , n} we have

f(x | t, p) = P(X = x | T = t, p) =
P(X = x, T = t | p)

P(T = t | p)

=

∏n
i=1 p

xi(1− p)1−xi(
n
t

)
pt(1− p)n−t

=
pt(1− p)n−t(
n
t

)
pt(1− p)n−t

=

(
n

t

)−1

,

which has no dependence on p. So T is sufficient for p.

The intuitive meaning of this is that only the number of successes matters for estimating p; the
order in which successes arrive shouldn’t change your guess for p.

Theorem 2.2 (Factorisation Criterion). Suppose X ∼ f(x; θ) and let T (X) be any statistic.
Then a statistic T (X) is sufficient for θ if and only if f can be written as

f(x; θ) = g(T (x), θ)h(x)

for some non-negative functions g, h.
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Foundations of Statistical Inference 2. Sufficiency and Factorisation

Proof for the discrete case. Suppose T is sufficient and write t = T (x). So

f(x; θ) = Pθ(X = x) = Pθ(X = x, T = t) = Pθ(X = x | T = t)Pθ(T = t).

Then just note that as T is sufficient, Pθ(X = x | T = t) =: h(x) is independent of θ, and
Pθ(T = t) =: g(t, θ) only depends on t and θ.

Conversely, suppose f(x; θ) = g(t, θ)h(x) for some non-negative functions g, h. So

Pθ(T = t) =
∑

x:T (x)=t

Pθ(X = x) =
∑

x:T (x)=t

f(x; θ) = g(t, θ)
∑

x:T (x)=t

h(x).

Thus Pθ(X = x | T = t) = Pθ(X=x,T=t)
Pθ(T=t) = Pθ(X=x)

Pθ(T=t) = h(x)∑
y:T (y)=t h(y) , which has no dependence on θ!

So T is sufficient for θ.

The next natural question to ask is to what extent we can summarise a set of data — by how much
we can reduce it — without losing information about θ. This brings us to the concept of minimal
sufficiency .

Example. Let X1, X2, X3 be independent Ber(p) random variables modelling three coin tosses (so
0 means heads and 1 means tails). Consider the following four statistics:

1. T1(X) = (X1, X2, X3),

2. T2(X) = (X1,
∑3
i=1Xi),

3. T3(X) =
∑3
i=1Xi,

4. T4(X) = 1T3(X)=0.

Which of these are sufficient for p?

Definition 2.3. A statistic is minimal sufficient if it can be expressed as a function of any other
sufficient statistic.

Remark (Partition induced by T ). A statistic T induces a partition on X (the set of possible outcomes
for X) via the equivalence relation x ∼ y ⇐⇒ T (x) = T (y).

Example (continued). The following diagrams show the partitions induced by the statistics
T1, . . . , T4:

HHH THT HTT HTH

TTH THH HHT TTT

1. T1(X) = (X1, X2, X3)

HHH THT HTT HTH

TTH THH HHT TTT

3. T3(X) =
∑3
i=1Xi

HHH THT HTT HTH

TTH THH HHT TTT

2. T2(X) =
(
X1,

∑3
i=1Xi

)
HHH THT HTT HTH

TTH THH HHT TTT

4. T4(X) = 1T3(X)=0

In each case T is constant within each class.

We can think of a minimal statistic as one inducing the coursest (least fine) possible partition (i.e.
conveying the least possible information).
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Foundations of Statistical Inference 2. Sufficiency and Factorisation

Theorem 2.4 (Lehman-Scheffé Criterion). A statistic T is minimal sufficient if and only if

T (x) = T (y) ⇐⇒ f(y; θ)

f(x; θ)
is independent of θ.

Example (continued). In the coin-tossing example, first consider T2. With x = TTH and y =

HTT, we have f(x; p) = f(y; p) = p2(1− p), so that f(x,p)
f(y,p) = 1, but clearly T2(X) 6= T2(Y ), so T2 is

not minimal sufficient.

Considering T4 instead, take x = HTH and y = TTT. So clearly T4(x) = T4(y), but f(y;p)
f(x;p) =

p3

p(1−p)2 = p2

(1−p)2 , which does depend on p. So T4 is also not minimal sufficient.

Proof of theorem. ( ⇐= ) Suppose T is a statistic such that T (x) = T (y) if and only if f(y;θ)
f(x;θ) is

equal to some k(x, y) independent of θ.

Sufficiency. In the discrete case,

f(x | t, θ) = Pθ(X = x | T = t) =
Pθ(X = x)

Pθ(T = t)
=

f(x; θ)∑
y:T (y)=t f(y; θ)

=
f(x; θ)∑

y:T (y)=t f(x; θ)k(x, y)

=

 ∑
y:T (y)=t

k(x, y)

−1

which is independent of θ, so T is sufficient. For the continuous case, replace the sum with an
integral.

Minimality. Now suppose U is another sufficient statistic and that U(x) = U(y) for some x, y.
Since U is sufficient, by the factorisation criterion we have

f(y; θ)

f(x; θ)
=
g(U(y), θ)h(y)

g(U(x), θ)h(x)
=
h(y)

h(x)

which is independent of θ. So by hypothesis, T (x) = T (y). Thus U(x) = U(y) =⇒ T (x) = T (y),
i.e. the partition of U is finer than that of T . So T is a function of U . Hence T is minimal
sufficient.

( =⇒ ) Conversely, suppose T is minimal sufficient. Take x, y such that T (x) = T (y). Then by the
factorisation criterion,

f(y; θ)

f(x; θ)
=
g(T (y), θ)h(y)

g(T (x), θ)h(x)
=
h(y)

h(x)

which does not depend on θ. (Note this only used the sufficiency of T .)

For the other direction, start by writing x ∼ y whenever f(x; θ) = k(x, y)f(y; θ) for all θ (for some
function k(x, y)). It is easy to check that this is an equivalence relation. For each equivalence
class [x] choose a representative x and define G to be the representative function (i.e. G(y) = x
for all y ∈ [x]). So G is a statistic constant on the equivalence classes. But it is also sufficient,
by the factorisation criterion, since f(x; θ) = k(x, x)f(x; θ) = k(x,G(x))f(G(x); θ) for all x. So T
is a function of G (by minimality) and hence is also constant on the equivalence classes, meaning
x ∼ y =⇒ T (x) = T (y).

Let’s turn to the case of exponential families.
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Foundations of Statistical Inference 2. Sufficiency and Factorisation

Theorem 2.5. Suppose the functions f(x; θ) = exp
[∑k

j=1 ηj(θ)Tj(x)−B(θ)
]
h(x) form a strictly

k-parameter exponential family. Let X = (X1, . . . , Xn) be a sample of i.i.d. random variables with
distribution f(x, θ). Then:

1. T(n) =
(∑n

i=1 T1(Xi), . . . ,
∑n
i=1 Tk(Xi)

)
is minimal sufficient; and

2. the distribution of T(n)(x) belongs to a k-parameter exponential family.

Remark. Since the vector X = (X1, . . . , Xn) is strictly k-parameter exponential, we could just say
T (X) = (T1(X), . . . , Tk(X)) is minimal sufficient.

Proof of theorem. Just note that

f((x1, . . . , xn); θ)

f((y1, . . . , yn); θ)
=

∏n
i=1 h(xi)∏n
i=1 h(yi)

exp

 k∑
j=1

ηj(θ)

 n∑
i=1

Tj(xi)−
n∑
i=1

Tj(yi)




which is independent of θ if and only if
∑n
i=1 Tj(xi) =

∑n
i=1 Tj(yi) for all j = 1, . . . , k.

The proof of the second point is left as an exercise.

Examples.

1. Bernoulli. Let X1, . . . , Xn be i.i.d. Bernoulli trials with parameter p, and let T (X) =∑n
i=1Xi be the number of successes. Then

f((x1, . . . , xn); p)

f((y1, . . . , yn); p)
=
pT (x)(1− p)n−T (x)

pT (y)(1− p)n−T (y)
= pT (x)−T (y)(1− p)T (y)−T (x)

which is independent of p if and only if T (x) = T (y). So T is minimal sufficient.

2. Uniform. Let X1, . . . , Xn be i.i.d. random variables with Xi ∼ U [a, b], taking the unknown
parameter to be θ = (a, b). Then

f((x1, . . . , xn); θ) =

n∏
i=1

1

b− a
1[a,b](xi) = (b− a)−n1min xi>a1max xi6b,

so by the factorisation criterion T (x) = (minxi,maxxi) is sufficient.

Exercise: is it minimal sufficient?

3. Normal. Let X = (X1, . . . , Xn) be a sample of i.i.d. N (µ, σ2)-distributed random variables.
For the parameter θ = (µ, σ2) ∈ R× R+, we have

f(x; θ)

f(y; θ)
=

(2πσ2)−n/2 exp
(
− 1

2σ2

∑n
i=1(xi − µ)2

)
(2πσ2)−n/2 exp

(
− 1

2σ2

∑n
i=1(yi − µ)2

)
= exp

− 1

2σ2

 n∑
i=1

x2
i −

n∑
i=1

y2
i − 2µ

 n∑
i=1

xi −
n∑
i=1

yi



 .

This ratio is independent of θ if and only if
∑n
i=1 xi =

∑n
i=1 yi and

∑n
i=1 x

2
i =

∑n
i=1 y

2
i .

Thus T (X) =
∑
Xi,

∑
X2
i is minimal sufficient.

Note that x = 1
n

∑
xi = T1(x)

n and S2 = 1
n−1

∑
(xi − x)2 = 1

n−1

(∑
x2
i − nx2

)
= 1

n−1 (T2(x)−
1
nT1(x)2) are in one-to-one correspondence with T (x), and hence (X,S2) is also minimal
sufficient for θ.
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Chapter 3

The Fisher Information and Point
Estimation

3.1 The Fisher information

We turn to the question now of whether there is some nice way to measure ‘how much’ information a
given dataset contains about a particular parameter.

Let f(x, θ) be a parametric family of densities.

Definition 3.1. For each x ∈ X , the likelihood function L(·, x) : Θ→ R+ is defined by L(θ, x) =
f(x, θ).

The log-likelihood is often written `(θ, x) := logL(θ, x).

To simplify our analysis, we will need some regularity assumptions about our model. These will, primarily,
allow use partial derivatives and interchange them with sums/integrals without worrying too much (as
we’ll see).

Reg 1. The distributions {f(·, θ) : θ ∈ Θ} have common support, so that A = {x : f(x, θ) > 0} is
independent of θ.

Remark. Distributions belonging to an exponential family satisfy Reg 1.

To proceed, we’ll start by just looking at the one-dimensional case.

3.1.1 The one-dimensional case

Reg 2. Θ ⊆ R is an open interval (finite or infinite).

Reg 3. For all x ∈ A and for all θ ∈ Θ, the derivative
∂f(x, θ)

∂θ
exists and is finite.

The following will be a useful tool to work with:
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Foundations of Statistical Inference 3. The Fisher Information and Point Estimation

Definition 3.2. When Regs 1–3 are satisfied, for x ∈ A we define the score function

S(θ, x) = `′(θ, x) =
∂ logL(θ, x)

∂θ
.

Now note the following handy fact (which is what motivates the regularity assumptions):

Lemma 3.3. Under Regs 1–3, for continuous distributions

∂

∂θ

∫
A
f(x, θ) dx =

∫
A

∂

∂θ
f(x, θ) dx

and for discrete distributions

∂

∂θ

∑
x∈A

f(x, θ) =
∑
x∈A

∂

∂θ
f(x, θ).

Proof. By the Leibniz integral rule.

This allows us to see the following:

Theorem 3.4. Under Regs 1–3,

Eθ S(θ,X) = 0 ∀θ ∈ Θ.

Proof. In the continuous case,

Eθ[S(θ,X)] =

∫
A
`′(θ, x)f(x, θ) dx =

∫
A

∂
∂θ f(x, θ)

f(x, θ)
f(x, θ) dx =

∂

∂θ

∫
A
f(x, θ) dx =

∂

∂θ
1 = 0.

The discrete case is similar.

Definition 3.5. When Regs 1–3 are satisfied, we define the Fisher information to be

IX(θ) = Varθ[S(θ,X)] = Eθ[(`′(θ,X))2].

Let us introduce one more regularity assumption now:

Reg 4. The log-likelihood ` is twice-differentiable for all x ∈ A, θ ∈ Θ, and

∂2

∂θ2

∫
A
f(x, θ) dx =

∫
A

∂2

∂θ2
f(x, θ) dx (for continuous distributions)

or
∂2

∂θ2

∑
x∈A

f(x, θ) dx =
∑
x∈A

∂2

∂θ2
f(x, θ) dx (for discrete distributions)

for all θ ∈ Θ.

This allows us to derive an alternative form for the Fisher information which will be much more commonly
used:

Theorem 3.6. Under Regs 1–4,

IX(θ) = −Eθ[`′′(θ,X)].
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Foundations of Statistical Inference 3. The Fisher Information and Point Estimation

Proof. In the continuous case,

`′′(θ, x) =
∂2

∂θ2
log f(x, θ) =

∂

∂θ

∂
∂θ f(x, θ)

f(x, θ)
=

(
∂2

∂θ2 f
)
f −

(
∂
∂θ f

)2

f2
=

∂2

∂θ2 f

f
−

(
∂
∂θ f

f

)2

.

By Reg 4,

Eθ
[(

∂2

∂θ2 f
)
/f

]
=

∫
A

(
∂2

∂θ2 f
)
/f · f dx =

∫
A

∂2

∂θ2
f dx =

∂2

∂θ2

∫
A
f dx = 0,

and thus

− Eθ[`′′(θ,X)] = Eθ
[(

∂
∂θ f(X, θ)/f

)2
]

= Eθ[(`′(θ,X))2].

The discrete case is similar.

Proposition 3.7 (Properties of the Fisher information).

1. (Information grows with sample size.) If X and Y are independent random variables,
then

I(X,Y )(θ) = IX(θ) + IY (θ).

In particular, if Z = (X1, . . . , Xn) where the Xi are i.i.d. copies of X, then

IZ(θ) = nIX(θ).

2. (Reparametrisation.) If θ = h(ξ) where h is differentiable, then the Fisher information of
X about ξ is

I∗X(ξ) = IX(h(ξ))[h′(ξ)]2.

Proof. Omitted from lectures (does not imply off-syllabus).

3.1.2 The multivariate case

Let’s extend this all to the multivariate case now — i.e. the case where θ ∈ Rk. Reg 1 (that the support
is independent of θ) remains unaltered but we have to adapt the other regularity assumptions:

Reg 2′. Θ ⊆ Rk is an open set.

Reg 3′. For all x ∈ A and for all θ ∈ Θ, the partial derivatives of L(θ, x) exist and are finite.

Reg 4′. The log-likelihood ` has all its second partial derivatives, and these can all be commuted
with summation/integration over A.

We can now generalise our definitions:

Definition 3.8. When Regs 1, 2′, 3′ are satisfied, we define the score function to be

S(θ, x) = ∇θ`(θ, x) =
(

∂
∂θ1

`(θ, x), . . . , ∂
∂θk

`(θ, x)
)t
.

Definition 3.9. When Regs 1, 2′, 3′ are satisfied, we define the Fisher information matrix to
be

IX(θ) = Covθ(S(θ,X)),
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Foundations of Statistical Inference 3. The Fisher Information and Point Estimation

so that

IX(θ)jr = Eθ
[
∂
∂θj

`(θ,X) ∂
∂θr

`(θ,X)

]
.

Note the last line above used that the multi-dimensional score function also has zero expectation, which
can be shown much like in the one-dimensional case.

Theorem 3.10. Supposing Regs 1, 2′, 3′, 4′ hold, define the observed Fisher information

matrix J by J(θ, x)jr = − ∂2`(θ, x)

∂θj∂θr
for j, r = 1, . . . , k. Then

IX(θ) = Eθ[J(θ,X)].

Proof. Exercise (a generalisation of the one-dimensional case).

3.2 Point estimation

Definition 3.11. For any function g : Θ → Γ (for some set Γ), an estimator of γ = g(θ) is a
function T : X → Γ.

The value T (X) is called the estimate of g(θ).

Definition 3.12. The bias of an estimator T for γ = g(θ) is

bias(T, θ) = Eθ[T ]− g(θ).

T is called unbiased for g(θ) if Eθ[T ] = g(θ) ∀θ ∈ Θ.

Example. Suppose X = (X1, . . . , Xn) is a sample of i.i.d. N (µ, σ2) random variables. Then
µ̂ = 1

n

∑n
i=1Xi is an unbiased estimator for µ, and S2 = 1

n−1

∑n
i=1(Xi − µ̂)2 is an unbiased

estimator for σ2

(Exercise: prove this.)

3.2.1 The method of moments

A very simple approach for estimating functions of moments of a random variable is to replace all of the
moments by their empirical values.

Formally, suppose (X1, . . . , Xn) is a sample of i.i.d. Pθ-distributed random variables, where θ ∈ Θ is the
parameter. In general if X ∼ Pθ, then the moments mr = Eθ[Xr] for r = 1, 2, . . . depend on θ.

Assume there exists a function h such that γ = h(m1, . . . ,mr).

Definition 3.13. For eack k = 1, . . . , r let m̂k = 1
n

∑n
i=1X

k
i . Then the moment estimator for γ

is defined as
γ̂MME = h(m̂1, . . . , m̂r).

Example. Suppose X1, . . . , Xn are i.i.d. Poisson with parameter λ > 0. Since m1 = E[X1] = λ,
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Foundations of Statistical Inference 3. The Fisher Information and Point Estimation

we can use the sample mean m̂1 = 1
n

∑n
i=1Xi, so that

λ̂MME = m̂1 =
1

n

n∑
i=1

Xi.

On the other hand, Var(Xi) = λ as well, so writing Var(Xi) = m2−m2
1 we can also use the estimator

λ̂MME = m̂2 − m̂2
1 =

1

n

n∑
i=1

(xi − x)2.

Which estimator is “better”?

3.2.2 Maximum likelihood estimators

Definition 3.14. An estimator T is called a maximum likelihood estimator (MLE) for θ if

L(T (x), x) = max
θ∈Θ

L(θ, x) ∀x ∈ X ,

and is denoted by θ̂MLE .

Theorem 3.15 (The Invariance Property). If γ = g(θ) and g is bijective, then θ̂ is a MLE for

θ if and only if γ̂ = g(θ̂) is a MLE for γ.

Proof. Part A statistics.

In the case above, if g is not bijective, we define γ̂MLE = g(θ̂MLE).

Theorem 3.16. If L(θ, x) is differentiable (in θ) and has a unique maximum in int(Θ), then θ̂MLE

is the unique solution of
∂

∂θ
L(θ, x) = 0.

Proof. Prelims analysis.

3.2.3 Variance and mean squared error

Definition 3.17. The mean squared error (MSE) of an estimator T for g(θ) is defined as

MSEθ(T ) = Eθ[(T − g(θ))2].

(This is also often called the quadratic loss function .)

Proposition 3.18. In general, for an estimator T for g(θ),

MSEθ(T ) = Varθ(T ) + (Eθ[T ]− g(θ))2︸ ︷︷ ︸
bias2

.

In particular, if T is unbiased, MSEθ(T ) = Varθ(T ).

Proof. Exercise.
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Example. Let X = (X1, . . . , Xn) be a sample of i.i.d. U(0, θ) random variables. Then θ̂MLE =
Xmax = max{Xi : i = 1, . . . , n}.

It’s easy to check that Eθ(Xmax) = n
n+1θ and Varθ(Xmax)− n

(n+1)2(n+2)θ
2, so that

MSEθ(Xmax) =
2θ2

(n+ 1)(n+ 2)
.

However, the estimator θ̂ = n+1
n Xmax is unbiased, and indeed

MSEθ(θ̂) =
θ2

n(n+ 2)
< MSEθ(θ̂MLE).
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Chapter 4

MVUEs and the Cramer-Rao Lower
Bound

Now that we’ve (among other things) developed some different techniques for estimating a parameter, it
is natural to seek to evaluate how well various estimators actually work.

Suppose X = (X1, . . . , Xn) is a random sample from the distribution Pθ. What is a ‘good’ estimator of
θ?

A fairly natural pathway would be to try and minimise the MSE:

Definition 4.1. We say T1 is a uniformly better estimator than T2 (or better in quadratic
mean) if for all θ ∈ Θ,

MSEθ(T1) 6 MSEθ(T2).

Remark. If θ̂ = θ0, then MSEθ0(θ̂) = 0. Hence no other estimator can be uniformly better!

Let’s restrict ourselves now to unbiased estimators. We start with the univariate case.

4.1 The one-dimensional case

Definition 4.2. θ̂ = θ̂(X1, . . . , Xn) is the minimum variance unbiased estimator (MVUE)
for θ (or g(θ)) if

• θ̂ is unbiased, and

• for all unbiased estimators θ̃, Varθ(θ̃) > Varθ(θ̂) ∀θ ∈ Θ.

Theorem 4.3 (Cramer-Rao Lower Bound (CRLB) in 1 dimension). Suppose Regs 1–4 hold
and that 0 < IX(θ) <∞. Let γ = g(θ) where g is a continuously differentiable real-valued function
with g′ 6= 0.

Let T be an unbiased estimator of γ. Then

Varθ(T ) >
|g′(θ)|2

IX(θ)
,
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with equality if and only if

T (x)− g(θ) =
g′(θ)S(θ, x)

IX(θ)
∀x ∈ A ∀θ ∈ Θ.

Remark. If T attains the CRLB,

Varθ(T ) =
|g′(θ)|2

IX(θ)
,

then it is clearly a MVUE. There is no guarantee that there exists an estimator which attains the bound.

Remark. In the case g(θ) = θ the CRLB is

Varθ(T ) >
1

IX(θ)

and T attains the CRLB if and only if S(θ, x) = IX(θ)(T (x) − θ) ∀x ∈ A ∀θ ∈ Θ, or equivalently

T (x) = θ + S(θ,x)
IX(θ) .

Proof of theorem. Note that

Covθ(T, S(θ,X)) = Eθ[TS(θ,X)] since Eθ(S(θ,X)) = 0

=

∫
X
T (x)

∂ log p(x, θ)

∂θ
p(x, θ) dx

=

∫
X
T (x)

∂p(x, θ)

∂θ
dx

=
∂

∂θ

∫
X
T (x)p(x, θ) dθ (note this step strictly requires an additional hypothesis on T )

=
∂

∂θ
Eθ[T ] = g′(θ).

Now set c(θ) := g′(θ)/IX(θ). Then

0 6 Varθ(T − c(θ)S(θ,X)) = Varθ T + c2(θ) Varθ(S(θ,X))− 2c(θ) Covθ(T, S(θ,X))

= Varθ T + c2(θ)IX(θ)− 2c(θ)g′(θ)

= Varθ(T )− |g
′(θ)|2

IX(θ)

which is the CRLB. We have inequality if and only if T − c(θ)S(θ,X) is almost surely constant, and
in that case it must be equal to its expectation g(θ):

T (x)− c(θ)S(θ, x) = g(θ) ⇐⇒ T (x)− g(θ) =
S(θ, x)g′(θ)

IX(θ)
.

Example. Suppose X ∼ Bin(n, θ), where n is known. Our parameter of interest will be γ = θ(1−θ)
(so g′(θ) = 1− 2θ). Hence

`(θ, x) = log

(
n

x

)
+ (n− x) log(1− θ) + x log θ,

and therefore

S(θ, x) = −n− x
1− θ

+
x

θ
,

so
∂

∂θ
S(θ, x) = − n− x

(1− θ)2
− x

θ2
.
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Thus the Fisher information is

IX(θ) = −Eθ
[
∂
∂θ S(θ,X)

]
=
n− Eθ[X]

1− θ2
+

Eθ[X]

θ2
=

n

(1− θ)θ
.

Observe that T (x) = 1
n−1x

(
1− x

n

)
is unbiased for γ (check this as an exercise) and Varθ(T ) =

θ
n −

θ2(5n−7)−4θ3(2n−3)+θ4(4n−6)
n(n−1) which is larger than the CRLB of (1−2θ)2θ(1−θ)

n .

Remark. We sometimes say that a statistic T is an efficient estimator for γ if it is unbiased for γ and
attains the Cramer-Rao lower bound.

4.2 The multivariate case

We turn now to the multivariate case. Suppose that γ = g(θ) ∈ Rm.

We will compare matrices using the Loewner order:

Definition 4.4. Let T, T ∗ be two unbiased estimators for γ. We say that T ∗ has a smaller
covariance matrix than T at θ ∈ Θ if

ut(Covθ T
∗ − Covθ T )u 6 0 ∀u ∈ Rm,

and we write Covθ T
∗ � Covθ T .

Theorem 4.5 (Cramer-Rao Lower Bound in m dimensions). Suppose Regs 1, 2′, 3′, 4′ hold
and that IX(θ) is not singular. Then the CRLB is

Covθ T � (Dθg)(θ)IX(θ)−1(Dθg)(θ)t ∀θ ∈ Θ,

where Dθg) is the Jacobian matrix, so (Dθg)(θ)ij =
∂gi(θ)

∂θj
.

Proof. Omitted.

Example. Let X = (X1, . . . , Xn) be a random sample of N (µ, σ2) random variables, where our
parameter of interest is θ = (µ, σ2). Recall from Part A Statistics that

IX(θ) =

n/σ2 0

0 n/2σ4

 .

The estimators X and S2 are independent, with Var(X) = σ2

n and Var(S2) = 2σ4

n−1 . We can see that
the CRLB is not attained.

Note too the following, which shows that MLEs line up with MVUEs when the CRLB is attained:

Theorem 4.6. Under Regs 1, 2′, 3′, 4′, if θ̂MLE is the MLE for θ and if there exists θ̃ which is
unbiased and attains the CRLB, then θ̃ = θ̂MLE almost surely.

Proof. Omitted.
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4.3 Exponential families and the CRLB

We conclude by returning to the case of an exponential family:

Theorem 4.7. Suppose X = (X1, . . . , Xn) belongs to a one-parameter exponential family in η and
T . Then the sufficient statistic T is efficient (attains the CRLB) for γ = g(θ) = Eθ[T ].

Proof. Note that p(x, θ) = h(x) exp[T (x)η(θ)−B(θ)]. So S(θ, x) =
∂

∂θ
`(θ, x) = −B′(θ)+η′(θ)T (x).

This means S(θ, x) and T (x) are linearly related, which implies

Covθ(S(θ,X), T (X))2 = Varθ(S(θ,X)) Varθ(T (X)).

Since Covθ(S(θ,X), T (X)) = g′(θ) and Varθ(S(θ,X)) = IX(θ), we conclude that Varθ(T (X)) =
[g′(θ)]2

IX(θ) , so indeed T attains the CRLB.
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Chapter 5

Completeness and the Rao-Blackwell
Theorem

Of course, even when the CRLB is not achievable, we still want to be able to find a MVUE.

Theorem 5.1 (Rao-Blackwell Theorem). Let X ∼ Pθ and let T be a sufficient statistic. Let γ̂
be an unbiased estimator for γ = g(θ).

Define γ̂T = Eθ[γ̂ | T ]. Then:

1. γ̂T is a function of T alone and does not depend on θ,

2. Eθ[γ̂T ] = γ ∀θ ∈ Θ (γ̂T is unbiased), and

3. Varθ(γ̂T ) 6 Varθ(γ̂), or Covθ(γ̂T ) � Covθ(γ̂) in the case θ ∈ Rk.

If tr(Covθ(γ)) <∞ then Covθ(γ̂) = Covθ(γ) if and only if γ̂ = γ almost surely.

Intuitively, this says that ‘any unbiased estimator can always be (weakly) improved by a sufficient
statistic’ — our best guess for the value of a particular unbiased estimator, given that we already know
some sufficient statistic, is at least as good as knowing the real thing.

Proof of theorem. We prove the three parts in order:

1. Since T is sufficient, f(x | θ, T ) is independent of θ, so

γ̂T = Eθ[γ̂ | T = t] =

∫
X
γ̂(x)f(x | t, θ) dx =

∫
X
γ̂(x)f(x | t) dx

which does not depend on θ.

2. By the unbiasedness of γ̂ and the tower property of expectations,

Eθ[γ̂T ] = Eθ[Eθ[γ̂ | T ]] = Eθ[γ̂] = γ.
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3. For k = 1, the result is fairly straightforward:

Varθ(γ̂) = Eθ[(γ̂ − γ)2] = Eθ[(γ̂ − γ̂T + γ̂T − γ)2]

= Eθ[Eθ[(γ̂ − γ̂T + γ̂T − γ)2 | T ]]

= Eθ[Eθ[(γ̂ − γ̂T )2 | T ]− 2Eθ[(γ̂ − γ̂T )(γ̂T − γ) | T ] + Eθ[(γ̂T − γ)2 | T ]]

= Eθ[Eθ[(γ̂ − γ̂T )2 | T ]]− 0 + Eθ[Eθ[(γ̂T − γ)2 | T ]]

= Eθ[Varθ(γ̂ | T )] + Varθ(γ̂T )

> Varθ(γ̂T ).

For k > 1, we can instead do:

Covθ[γ̂] = Eθ[(γ̂ − γ)(γ̂ − γ)t]

= Eθ[(γ̂ − γ̂T )(γ̂ − γ̂T )t] + Eθ[(γ̂T − γ)(γ̂T − γ)t]− 2Eθ[(γ̂ − γ̂T )(γ̂T − γ)t]

= Eθ[(γ̂ − γ̂T )(γ̂ − γ̂T )t] + Covθ(γ̂T ) + 2Eθ[(γ̂ − γ̂T )(γ̂T − γ)t].

The first term here is clearly nonnegative, and it isn’t too hard to see that the third term is
equal to zero. The result follows.

The proof of the fact about trace is left as an exercise.

Example. Let X1, . . . , Xn be i.i.d. Ber(θ) random variables. Note that θ̂ = X1 is unbiased for θ,
and that T =

∑n
i=1Xi is sufficient for θ.

In this case,

θ̂T = Eθ[X1 | T = t] = Pθ(X1 = 1 | T = t) =
Pθ(X1 = 1, T = t)

Pθ(T = t)

=
Pθ
(
X1 = 1,

∑n
i=1Xi = t− 1

)(
t
n

)
θt(1− θ)n−t

=
θ
(
t−1
n−1

)
θt−1(1− θ)n−t(

t
n

)
θt(1− θ)n−t

=
t

n

so θ̂T = T/n.

Definition 5.2. A statistical model {Pθ : θ ∈ Θ} is called complete if for any h : X → R,

Eθ[h(X)] = 0 ∀θ ∈ Θ =⇒ h(X) = 0 a.s. ∀θ ∈ Θ.

A statistic T is called complete if the model {PTθ : θ ∈ Θ} is complete, i.e.

Eθ[h(T )] = 0 ∀θ ∈ Θ =⇒ h(T ) = 0 a.s. ∀θ ∈ Θ.

Remark. This definition is motivated by the following consequence: if T is complete and g(T ) is unbiased
for θ, then g(T ) is the unique (up to a.s.) unbiased estimator for θ that is a function of T . The proof of
this is a simple application of the definition of completeness, and is left as an exercise.

Examples.

1. Suppose the statistical model consists only of the two distributions N (1, 2) and N (0, 1). This
model is not complete: take h(x) = (x − 1)2 − 2. For both distributions, E[h(x)] = 0, but
h(x) 6= 0 ∀x 6=

√
2 + 1, 1−

√
2.

2. The statistical model {U(0, θ), θ ∈ R+} is complete. Indeed, suppose 0 = Eθ[h(X)] =
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∫ θ
0

1
θh(x) dx for all θ > 0. Then

∂

∂θ

∫ θ

0

h(x) dx = 0 ∀θ > 0.

But ∂
∂θ

∫ θ
0
h(x) dx = h(θ) almost everywhere, so h(x) = 0 almost surely.

3. If X1, . . . , Xn are i.i.d. U(0, θ) then Xmax is a complete statistic. Indeed, the density of Xmax

is

fθ(t) =
ntn−1

θn
1t∈[0,θ].

Then if 0 = Eθ[h(Xmax)] =
∫∞
−∞ h(t)fθ(t) dt = n

θn

∫∞
0
h(t)tn−1 dt for all θ ∈ Θ, we must have∫ ∞

0

h−(t)tn−1 dt =

∫ ∞
0

h+(t)tn−1 dt ∀θ ∈ Θ,

where h± are the positive/negative parts of h. This implies h+(t) = h−(t) and therefore
h(t) = 0 (almost surely).

Theorem 5.3 (Completeness for exponential families). Assume P is a k-parameter exponen-
tial family with natural parameters η = (η1, . . . , ηk) and that the natural parameter space Ξ contains
a non-empty k-dimensional interval.

Then T (x) = (T1(x), . . . , Tk(x)) is sufficient and complete.

Proof. Exercise.

Corollary 5.4. If Pθ belongs to a strictly k-parameter exponential family, then the vector of natural
observations T (x) is sufficient and complete.

Proof. Immediate from theorem, since strictly k-parameter implies Ξ contains a non-empty k-
dimensional interval (otherwise one of the natural parameters would be fixed by the others).

Theorem 5.5 (Lehman-Scheffé Theorem). Let T be a sufficient and complete statistic for the
statistical model P and let γ̂ be an unbiased estimator for γ = g(θ) ∈ Rk.

Then γ̂T = Eθ[γ̂ | T ] is an MVUE for γ.

Remark. In particular, any unbiased estimator that is a function of a complete sufficient statistic is an
MVUE. This is how the Lehman-Scheffé Theorem will often be used.

Proof of theorem. By contradiction. Suppose there exists an unbiased estimator γ̃ with Covθ0 γ̃ ≺
Covθ0 γ̂T for some θ0 ∈ Θ.

The Rao-Blackwell Theorem implies, for γ̃T := Eθ[γ̃ | T ], that

Covθ0 γ̃T � Covθ0 γ̃ ≺ Covθ0 γ̂T .

On the other hand, γ̃T and γ̂T are both unbiased estimators which are functions of the complete
statistic T . Hence, by completeness (see the remark after the definition) γ̂T = γ̃T a.s. and so
Covθ0 γ̃T = Covθ0 γ̂T , yielding the contradiction.

Examples.

1. Uniform. Let X1, . . . , Xn be i.i.d. U [0, θ] random variables. Recall that Eθ[Xmax] = n
n+1θ.

Page 25 of 63
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We have seen that Xmax is complete and sufficient; hence θ̂ = n+1
n Xmax is the MVUE. (Note

the CRLB does not apply.)

2. Normal. Let X1, . . . , Xn be i.i.d. N (µ, σ2) random variables. We know this is a strictly
2-parameter exponential family, so T =

(∑n
i=1Xi,

∑n
i=1X

2
i

)
is complete and sufficient. As

(X̄, S2) is unbiased and a function of T , it is the MVUE. (Here X̄ := 1
n

∑n
i=1Xi and S2 :=

1
n−1 (Xi − X̄)2.)

Remember that for S2 the Cramer-Rao bound is not attained.

3. Poisson 1. Let X = (X1, . . . , Xn) be a sample of i.i.d. Po(λ) random variables. Recall that

λ̂MME = m̂1 =
1

n

n∑
i=1

Xi and λ̃MME = m̂2 − m̂2
1 =

1

n

n∑
i=1

(Xi − X̄)2

are two moment estimators for λ.

The Poisson family is a strictly 1-parameter exponential family with canonical observation
T (X) = X̄) (for the joint distribution). Thus X̄ is a sufficient and complete statistic.

Hence the Lehman-Scheffé Theorem tells us that λMME is the MVUE.

What is the Cramer-Rao bound? For a single observation, S(x, λ) = x
λ − 1 and IX(λ) = λ−1,

so the lower bound is λ/n. Since also Var(X̄), we conclude that λMME = X̄ is efficient (it
achieves the CRLB).

4. Poisson 2. What about the other estimator above, λ̂MME? Well, doing a little calculation
(see the lecture slides for details) reveals that Xi | {

∑n
j=1Xj = k} ∼ Bin(k, 1/n). So, using

Rao-Blackwell to ‘improve’ the unbiased estimator S2 = n
n=1 λ̃MME by the sufficient statistic

X̄, we get

Eλ

S2 |
n∑
j=1

Xj = k

 =
n

n− 1

Eλ

X2
1 |

n∑
j=1

Xj = k

− k2

n2


=

n

n− 1

{
k

n

(
1− 1

n

)
+
k2

n2
− k2

n2

}

=
k

n
.

So starting from S2 as an unbiased estimator for λ we arrive at X̄ by Rao-Blackwell using∑
Xi.
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Chapter 6

Bayesian Inference: Conjugacy and
Improper Priors

We turn now, in this second half of the course, to the Bayesian view of statistical inference, and look at
how we may develop further the theory from Part A.

6.1 Recap of fundamentals

Recall that in Bayesian statistics, parameters are treated as random variables too (rather than having
an unknown true value, as in frequentist statistics). At the core of this approach is of course Bayes’
Theorem, which we have met variously over the last two years. In our setting it most commonly reads
as follows:

Theorem 6.1 (Bayes’ Theorem). Given a likelihood L(θ, x) and a prior π(θ) for θ, the
posterior distribution for θ (the conditional distribution of θ given the data X) is given by

π(θ | x) =
L(θ, x)π(θ)∫
L(θ′, x)π(θ′) dθ′

.

(If π is a mass function replace the integral with a sum.)

We will often simply write
π(θ | x) ∝ L(θ, x)π(θ),

i.e. posterior ∝ likelihood · prior.

Proof. Prelims/Part A probability and statistics.

Remark. It is worth emphasising here that in Bayesian statistics the likelihood L(θ, x) is the conditional
pmf of X given the random variable θ; or the conditional probability, in the case of a discrete distribution
for the data. This is in contrast to the frequentist setting of the first half of the course, where L(θ, x)
was just the pmf/pdf of X, parameterised by the value θ (which had a fixed unknown ‘true’ value).

Remark. The denominator in the theorem above is called the marginal likelihood in this context.

Example. Suppose X ∼ Bin(n, θ), and that our prior distribution for θ is Beta(a, b), i.e.

π(θ) =
θa−1(1− θ)b− 1

B(a, b)
, 0 < θ < 1.

The likelihood function is L(θ, x) =
(
n
x

)
θx(1 − θ)n−x for x = 0, . . . , n. So by Bayes’s Theorem the
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posterior distribution is

π(θ | x) ∝ likelihood · prior

∝ θx(1− θ)n−x · θa−1(1− θ)b−1

= θa+x−1(1− θ)n−x+b−1.

This is again (up to normalisation) a Beta distribution, with updated parameters a+ x, b+ n− x.
This is an example of conjugacy , which we will meet next.

Suppose we choose a, b here such that E[θ] = 0.7 and Var(θ) = 0.1. Suppose we then observe:

• X = 3 for a number of trials n = 10; or alternatively

• X = 30 for a number of trials n = 100.

In the first case our posterior will have a mean of about 0.5 to 0.6, and in the second case our
posterior will have a mean of less than 0.4.

As n increases, the likelihood increasingly overwhelms the prior. This captures the intuition that
the second observation seems to be much stronger evidence than the first case that θ is in fact near
to 0.3.

Remark. This example illustrates the general effect at play in Bayesian inference: as we make more
observations of random variables dependent on our unknown parameter — as we gather more data,
effectively — the information we have about the unknown parameter and we revise our beliefs accordingly.

6.2 Conjugate priors

We start off now by introducing the notion of conjugacy .

Definition 6.2. Consider a model (L(θ, x))θ∈Θ,x∈X . We say that a family of prior distributions
(πγ)γ∈Γ is conjugate if

∀γ ∈ Γ, x ∈ X ∃γ̃(x) s.t. πγ(· | x) = πγ̃(x)(·),

i.e. all posteriors also belong to the family.

We say the prior and the posterior are conjugate distributions, and the prior is a conjugate
prior for the likelihood L.

In other words, a conjugate prior is a prior which, when combined with the likelihood, produces a
posterior distribution in the same family as the prior.

Examples. See the handwritten notes for two example of conjugate priors; the first on the Gamma
prior for the Gaussian distribution, and the second on the Beta prior for the binomial distribution.

It turns out exponential families have precisely this property!

Proposition 6.3 (Conjugate priors for exponential families). Suppose

L(θ, x) = h(x) exp


k∑
i=1

ηi(θ)Ti(x)−B(θ)


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defines a k-parameter exponential family. Then the distributions of the form

πγ(θ) ∝ exp

γ0B(θ) +

k∑
i=1

γiηi(θ)

 ,

for parameters γ = (γ0, γ1, . . . , γk) are a conjugate prior family.

Proof. Exercise.

Example. Let X = (X1, . . . , Xn) be a sample of i.i.d. Po(θ) random variables, so the (joint)
likelihood is

L(θ, x) ∝ exp(−nθ + T (x) log θ)

where T (x) =
∑n
i=1 xi. So the natural conjugate prior is of the form

π(θ) ∝ exp(γ0θ + γ1 log θ.

(Note this is normalisable iff γ0 < 0 and γ1 > −1.)

Writing β = −γ0 and α = γ1+1, we have π(θ) ∝ θα−1e−βθ which is the pdf of a Γ(α, β) distribution.

We can easily see that the posterior distribution is Γ(α + T (x), β + n). So indeed the Gamma
distribution is a conjugate prior (for the Poisson likelihood).

6.3 Improper priors

So far both the prior and the posterior functions have been probability densities (or mass functions).
This is natural given the origin in Bayes’ Theorem, but in fact we do not require that the prior be a
‘real’ probability distribution for the posterior to exist and be well-defined.

Definition 6.4. We say that a pdf/pmf π is an improper prior if it has infinite mass:∫
Θ

π(θ) dθ =∞, π(θ) > 0 ∀θ ∈ Θ

(as usual replacing integrals with sums if necessary).

A posterior distribution π(θ | x) can be defined as usual as soon as∫
Θ

f(x, θ)π(θ) dθ <∞ almost surely in x.

Examples.

1. Likelihood X | µ ∼ N (µ, 1) and prior π(µ) = 1 ∀µ ∈ R. In this case log π(µ | x) = − 1
2 (x −

µ)2 + constant, i.e. the posterior distribution is N (x, 1).

2. Likelihood X | p ∼ Bin(n, p) and prior π(p) = [p(1− p)]−1 (this is the Haldane prior). The
posterior is π(p | x) ∝ px−1(1− p)n−x−1 which is improper iff x = 0 or x = n; so the posterior
is not always well-defined.

Exercise. If X is discrete and can take only finitely many values, say {z1, . . . , zN} = X , show that
we can’t use an improper prior.

Hint: try proving that the marginal likelihood cannot be finite for all i = 1, . . . , N .
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Does this argument work for X countably infinite? (Try X ∼ Po(λ), π(λ) = λ−1.)
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Chapter 7

Non-Informative Priors

We’ve just seen that priors don’t always have to be probability distributions. When may we want to
make use of this?

We’re used to the notion of a subjective prior , a distribution representing our prior knowledge about
the parameter before any data is collected. With this approach, we may try different priors representing
different ‘points of view’.

This is in contrast to the concept of an objective prior (a non-informative prior) which we’ll explore
in this chapter. This is a prior which is somehow ‘automatic’, reflecting the lack of any initial knowledge
about the parameter — and crucially may have no probabilistic interpretation, so doesn’t have to be a
valid probability distribution. Non-informative priors can be used when little or no reliable information
is available.

There are several approaches for defining a non-informative prior, three of which we’ll mention here.

7.1 Uniform priors

Definition 7.1. The uniform prior is the prior π(θ) = 1 ∀θ.

Remark. Note this is just the Lebesgue measure on Θ (in the continuous case).

This is the obvious, näıve representation of lack of information; every value being equally likely. Under
this prior, the posterior is

π(θ | x) =
L(θ, x)∫

Θ
L(θ, x) dθ

,

so is defined as long as
∫

Θ
L(θ, x) dθ <∞ almost surely in x.

Example. Let X ∼ Exp(θ) and π(θ) = 1. The marginal likelihood is
∫ θ

0
e−θxθ dθ which is finite

for all x > 0, so the posterior is well-defined. But does it have nice properties?

Let η = log θ. Then the prior for η is

π̃(η) = π(θ(η))
dθ

dη
=

dθ

dη
= eη 6= 1.

We see that reparametrising means the prior isn’t flat anymore; in fact, as a prior in η, π̃ is very
informative (large values are much more likely than small ones).
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7.2 Jeffrey’s prior

The last example motivates the construction of a prior that does not depend on the parametrisation.

Definition 7.2. Jeffrey’s prior is given, in the one-dimensional case, by

π(θ) ∝
√
Iθ

where Iθ = Eθ[ ∂
2

∂θ2 `(θ, x)] is the Fisher information.

Remark. Why does this work? If θ = g(ψ) for some continuously differentiable function g then the
reparametrised prior is

π̃(θ) ∝ π(g(ψ))|g′(ψ)| =
√
Iθ|g′(ψ)|.

Recall that Iψ = (g′(ψ))2Iθ, so
√
Iψ =

√
Iθ|g′(ψ)|. Hence π̃(ψ) ∝

√
Iψ.

So indeed Jeffrey’s prior is invariant under reparametrisation.

7.2.1 Jeffrey’s prior in higher dimensions

This definition generalises naturally to higher dimensions:

Definition 7.3. The k-dimensional Jeffrey’s prior is given by

π(θ) ∝ |Iθ|1/2,

where |Iθ| = det Iθ and Iθ is the Fisher information matrix, so under the standard regularity

assumptions (Iθ)ij = −Eθ
[

∂2

∂θi∂θj
`(θ, x)

]
.

It is easy to check that this is indeed invariant under one-to-one reparametrisation.

Example. Suppose X ∼ Po(λ), so that f(x, λ) = e−λλx

x! for x = 0, 1, 2, . . ..

Then Jeffrey’s prior is

π(λ) ∝
√
IX(λ) =

√
E[(`′(λ,X))2]

=

√√√√E

[(
x

λ
− 1

)2
]

=

√√√√ ∞∑
x=0

f(x, λ)

(
x− λ
λ

)2

=

√√√√e−λ
∞∑
x=0

λx

x!

(
x2

λ2
− 2x

λ
+ 1

)

=

√
1

λ2
E
[
E[(X − λ)2]

]
= λ−1/2.

Note this is an improper prior.
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7.3 Maximum entropy prior

Another possible approach for constructing a non-informative prior is inspired by information theory.

Definition 7.4. The entropy of a pdf/pmf π is defined as

Ent[π] = −
∫

Θ

π(θ) log π(θ) dθ.

As always, replace the integral with a sum if π is a pmf.

Remark. In the continuous case, entropy is often referred to as the differential entropy .

Intuitively, entropy is a measure of the uncertainty of a distribution. A large entropy means the space is
well-explored at all scales.

For a non-informative prior, then, it makes sense to pick the function that maximises the entropy subject
to any relevant constraints (e.g. a fixed mean).

Example. Suppose we wish to find the distribution π which maximises Ent[π] on Θ = R subject
to the constraints∫ ∞

−∞
π(θ) dθ = 1,

∫ ∞
−∞

θπ(θ) dθ = µ and

∫ ∞
−∞

(θ − µ)2π(θ) dθ = σ2

for fixed µ, σ2.

The solution is π(θ) = 1√
2πσ2

e−(θ−µ)2/2σ2

. This can be shown using variational calculus or using

information-theoretic techniques (a proof is seen on a problem sheet in the Information Theory
course).

Thus the Gaussian distribution is the maximum-entropy distribution for the real line.

Remark. The maximum entropy distribution does not always exist (for example the class of distributions
may have unbounded entropy).

The previous example leads us to a more general theorem, which we shall not prove:

Theorem 7.5. The density π(θ) that maximises Ent[π] subject to E[Tj(θ)] = tj for j = 1, . . . , p
takes the p-parameter exponential family form

π(θ) ∝ exp

 p∑
i=1

λiTi(θ)

 ∀θ ∈ Θ,

where λ1, . . . , λp are determined by the constraints.

Proof. Omitted; see Leonard and Hsu for a proof.

Example (continued). In the example above, our two constraints were E[T1(θ)] = µ and E[T2(θ)] =
σ2, where T1(θ) = θ and T2(θ) = (θ − µ)2.

The above theorem then gives that the maximum-entropy prior is of the form π(θ) ∝ exp(λ1θ+λ+
2(θ − µ)2). The two constraints then imply that λ1 = 0 and λ2 = − 1

2σ2 , thus giving the Gaussian
distribution we just saw.
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Example. Suppose a0 6 a1 6 · · · 6 ap and θ ∈ (a0, ap).

Consider the constraints π(θ ∈ (aj−1, aj ]) = φj for j = 1, . . . , p. This is equivalent to requiring
E[Tj(θ)] = φj for j = 1, . . . , p, where Tj(θ) = 1{aj−1<θ6aj}.

Under these conditions the maximum-entropy distribution is of the form

π(θ) ∝ exp

 p∑
j=1

λj1{aj−1<θ6aj}

 , a0 6 θ 6 ap.

Hence πθ is piecewise constant on the intervals (ai, ai+1].
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Chapter 8

Predictive Distributions

We move on now towards applications of Bayesian inference. Let us briefly touch on how we can make
predictions for new datapoints.

Definition 8.1. If X1, . . . , Xn, Xn+1 are i.i.d. obsevations from the distribution f(x, θ), with prior
π(θ), then the posterior predictive distribution is

f(xn+1 | x) =

∫
Θ

f(xn+1, θ)π(θ | x) dθ

where here x = (x1, . . . , xn).

Thus the predictive distribution describes the distribution of a new observation given all the observations
we’ve already made.

Examples.

1. Poisson likelihood, Gamma prior. Suppose Y ∼ Po(θ) and that our prior for θ is a Γ(α, β)
distribution.

The marginal likelihood for this model is

m(y) =

∫ ∞
0

e−λ
λy

y!

βα

Γ(α)
λα−1e−βλ dλ.

On the other hand, we can use that π(θ | y) = f(y,θ)π(θ)
m(y) , so m(y) = f(y,θ)π(θ)

π(θ|y) . We have seen

previously that in this setting the posterior is π(θ | y) ∼ Γ(α+ y, β + 1). Hence

m(y) =

(
e−θθy

y!

)(
βαe−βθθα−1

Γ(α)

)
(

(β+1)α+yθα+y−1e−(β+1)θ

Γ(α+y)

)
=

Γ(α+ y)

Γ(α)y!

(
β

β + 1

)α(
1

β + 1

)y
which is the pmf of a NegBin(α, β) distribution.

Thus we have shown that the densities/masses of the Poisson, Gamma and negative binomial
distributions are related by

pNegBin(y;α, β) =

∫ ∞
0

pPo(y; θ) · pΓ(θ;α, β) dθ.
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Hence the predictive distribution has pmf

π(yn+1 | y) =

∫ ∞
0

pPo(yn+1; θ)pΓ(θ;α+ Σyi, β + n) dθ = pNegBin(yn+1;α+ Σyi, β + n),

so is a negative binomial distribution with parameters α+
∑n
i=1 yi and β + n.

2. Gaussian with known variance. Suppose now that X1, . . . , Xn+1 are i.i.d. N (θ, σ2)
random variables, where σ2 is known, and that our prior distribution for the mean is θ ∼
N (µ0, σ

2
0). We want to predict Xn+1, having seen X1, . . . , Xn.

The posterior after the first n observations is

π(θ | x) ∝ π(θ)p(x | θ) ∝ exp

[
− 1

2σ2
0

(θ − µ0)2

]
n∏
i=1

exp

[
− 1

2σ2
(xi − θ)2

]

∝ exp

−1

2

 1

σ2
0

(θ − µ)2 − 1

σ2

n∑
i=1

(xi − θ)2




∝ exp

[
− 1

2σ2
n

(θ − µn)2

]
where, by completing the square, we find that µn =

σ−2
0 µ0+σ−2∑n

i=1 xi

σ−2
0 +nσ−2

and σ−2
n = σ−2

0 +nσ−2.

(Observe that if σ2 = σ2
0 then the prior has the same weight as that of a single extra observa-

tion.)

So θ | X ∼ N (µn, σ
2
n) and Xn+1 | θ ∼ N (θ, σ2). We can rewrite these two facts as

θ = µn + σnZ, Xn+1 = θ + σY

for some independent Y, Z ∼ N (0, 1), and so Xn+1 = µn + σnZ + σY . Thus Xn+1 | X ∼
N (µn, σ

2 + σ2
n).

(We could also have arrived at this last result by directly integrating the densities; our method
was just an equivalent and simpler approach in this case.)
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Chapter 9

Heirarchical Models

In certain situations, the data we are modelling has a natural heirarchical structure. We illustrate this
first with an extended example.

Example (Study of cardiac treatment across different hospitals). Consider the dataset in
fig. 9.1 consisting of mortality rates in infant cardiac surgery across I = 12 hospitals. Each hospital
i conducts ni surgeries, Yi of which result in death. We use the natural model for the number of
deaths at each hospital as Yi ∼ Bin(ni, θi), where θi is an unknown parameter.

How do we model the mean mortality rates θ = (θ1, . . . , θ12)?

Three broad approaches come to mind:

• Identical parameters. We assume all the θi are identical. This ignores the structure of the
problem and pools all the data. In this case this means we’re assuming the surgery success
rate doesn’t depend on which hospital conducts the surgery.

• Independent parameters. We assume all the θi are independent, i.e. entirely unrelated.
The results from each unit can be analysed independently. In this case this means we’re
assuming there is nothing similar about the surgery at different hospitals, and the failure rates
at different hospitals don’t depend on each other in any way.

• Exchangeable parameters. We assume the θi are similar; no one hospital is a priori any
better than another. We’ll discuss this more later.

Let’s see how the first two approaches can work in this situation, where relevant examining our
estimates for hospitals A and H in particular:

• All θi equal (frequentist approach). The model is Yi ∼ Bin(ni, θ) for each i, so
∑
Yi ∼

Bin(
∑
ni, θ). Thus the MLE for θ is θ̂ =

∑
yi∑
ni

= 0.0739.

• Independent θi (frequentist approach). The model is Yi ∼ Bin(ni, θi) independently for

each i. The MLE for each θi is θ̂i = yi
ni

. So in particular θ̂A = 0 and θ̂B = 0.1442.

• All θi equal (Bayesian approach). The model is Yi | θ ∼ Bin(ni, θ) for each i, and we’ll
use the prior θ ∼ Beta(a, b) with a = 4 and b = 46. (We choose the Beta distribution since
it’s a conjugate prior for the binomial distribution; and the choice of parameters a, b will be

discussed later.) The posterior mean of θ is then
∑
yi+α∑

ni+α+β = 0.0740.

• Independent θi (Bayesian approach). The model is Yi | θi ∼ Bin(ni, θi) independently
for each i, with i.i.d. priors θi ∼ Beta(a, b). The posterior mean for each θi is then yi+α

ni+α+β
which takes value 0.0412 for hospital A and 0.1321 for hospital H.
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Figure 9.1: Number of infant cardiac surgeries and number of mortalities across 12 hospitals.

The first method (frequentist, equal parameters) gives some pretty unlikely results (e.g. the observed
death rate for hospital H is not probably given our estimated θ), and the second method (frequentist,
independent parameters) totally ignores data from other hospitals when estimating θi for a particular
hospital; but this is the same medical procedure, so this is unnatural.

The third method (Bayesian, equal parameters) has the same problem as in the frequentist setting,
but the last method (Bayesian, independent parameters drawn from the same distribution) seems to
address these issues; the parameters are different for each hospital, but are all drawn from the same
distribution, whose parameters can be inferred from the entire dataset.

This is what we mean by a natural heirarchical structure .

How can we estimate the parameters, then, of the shared prior distribution?

Example (continued). In the example above, the approach we settled on models the θi as drawn
independently from a Beta(a, b) distribution. How do we estimate the parameters (a, b)?

• Approximate empirical Bayes approach. The most obvious way to estimate (a, b) is to
use a standard frequentist technique; the method of moments. In this context, this means we
pick (a, b) so that the prior distribution has the same mean and variance as the sample mean
and sample variance of the observed maximum likelihood estimates for the parameters θi.

Specifically, we calculate ri = yi/ni for each hospital (this is the observed mortality rate; the
MLE for θi) and we calculate the sample mean and sample variance of the set {r1, . . . , r12};
and then solve for â, b̂ such that Beta(â, b̂) has the same mean and variance.

(Then we use Beta(â, b̂) as our shared prior for the θi, to obtain the posterior distribution

π(θi | â, b̂, yi) for each θi as described above.)

This approach is reasonable, but we have the problem that we’re using the same data twice — once
to pick â, b̂) and once to find the individual posteriors for the θi. This leads to overconfidence in

the posterior distributions! Moreover, we’re making a fixed choice of (â, b̂) and working with that
choice, so the posterior distributions we derive will not reflect the inherent uncertainty in the values
of the parameters (a, b).

This motivates a more subtle approach that is Bayesian through and through!

• Heirarchical Bayesian model. We may instead assume a joint probability model for
(θ, a, b). In other words, now θ, a and b are all treated as random variables.

As before (except now treating these explicitly as conditional distributions) we say θi | (a, b) ∼
Beta(a, b) independently for each i, and we now also model the marginal distribution of (a, b)
as (a, b) ∼ p(a, b). This is effectively a prior distribution for (a, b); we call it the hyperprior .

In summary, our heirarchical model has three layers:

– Level 1: Yi | θi ∼ Bin(ni, θi) independently for each i;

– Level 2: θi | (a, b) ∼ Beta(a, b) independently for each i;

– Level 3: (a, b) ∼ p(a, b) for some hyperprior distribution p(a, b).
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Note that the θi are now not independent, but they are conditionally independent given a, b.

The empirical Bayes approach will be discussed in more detail later in the course; the heirarchical Bayes
approach can be defined in generality as follows:

Definition 9.1. A heirarchical Bayesian model introduces a vector φ of hyperparameters
with a hyperprior distribution p(φ); the vector θ of parameters we are interested in is modelled as
having conditionally independent entries given φ.

The joint prior distribution is p(θ, φ) = p(θ | φ)p(φ) and the joint posterior distribution is
p(θ, φ | y) ∝ p(y | θ, φ)p(θ, φ) = p(y | θ)p(θ | φ)p(φ).

Example (continued). In the case of the hospital data, the joint posterior distribution is

p(θ, a, b | y) ∝ p(y | θ)p(θ | a, b)p(a, b)

=

 I∏
i=1

p(yi | θi)

 I∏
i=1

p(θi | a, b)

 p(a, b)

∝

 I∏
i=1

θyii (1− θi)ni−yi
 I∏

i=1

Γ(a+ b)

Γ(a)Γ(b)
θa−1
i (1− θi)b−1

 p(a, b).

Thus we have

p(θ | a, b, y) ∝
I∏
i=1

θa+yi−1
i (1− θi)b+ni−yi−1

(all we did here was drop factors that depend only on a, b).

This shows that, given a, b, the θi have independent beta posteriors.

On the other hand, the posterior for (a, b) is

p(a, b | y) ∝ p(a, b)p(y | a, b) = p(a, b)

I∏
i=1

Γ(a+ b)

Γ(a)Γ(b)

Γ(b+ ni − yi)Γ(a+ yi)

Γ(a+ b+ ni)
.

See the handwritten lecture slides for plots of these distributions.

Remark. How can we generate new datapoints using the joint posterior p(θ, φ | y) in general?

We can use the existing data to first draw possible parameters from the current posterior and then draw
new datapoints given the chosen parameters:

1. Draw φ ∼ p(φ | y).

2. Draw θ ∼ p(θ | φ, y).

3. Draw predictive values ỹ from p(y | θ).

In the model we’ve seen, the parameters θi were conditionally independent given the hyperparameter
vector φ.

This is a special case of a property that is in general desirable:

Definition 9.2. The distribution of a random vector θ = (θ1, . . . , θI) is symmetric, or exchange-
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able , if

(θ1, . . . , θI)
d
= (θσ(1), . . . , θσ(I))

for any permutation σ.

Intuitively, this says that ‘no one parameter is a priori to be treated differently from any of the other
parameters’.

Let’s see that conditional independence indeed satisfies this property:

Proposition 9.3. If θ = (θ1, . . . , θI) has (prior) distribution

p(θ) =

∫  I∏
i=1

π(θi | ψ)

 g(ψ) dψ

for some ψ with distribution g(ψ), i.e. the θi are conditionally independent given ψ, then the
distribution of θ is exchangeable (symmetric).

Proof. Exercise.

In fact, this is sufficient:

Theorem 9.4 (De Finetti). All exchangeable sequences are of the above form in the large sample
limit.

Proof. Omitted.

9.1 Gaussian data example

See the handwritten course slides for an extended example of heirarchical modelling with Gaussian-
distributed data.
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Chapter 10

Decision Theory

Throughout this course we have been exploring ways of estimating parameters, predicting new values,
or inferring probability distributions. In the past we have come across hypothesis testing (which we’ll
explore again at the end of this course). All of these are examples of making decisions based on data. In
this section we develop this into a formal theory.

10.1 Basic framework and admissibility

As usual, we will assume a data model X | θ ∼ f(x, θ) for some parametric family {f(x, θ) : θ ∈ Θ},
where Θ is our parameter space .

We will introduce additionally now:

• An action (or decision) space A. Typical examples include A = {0, 1} for selecting a hypoth-
esis, or A = g(Θ) for estimating a function g(θ) of a parameter.

• A loss function L : Θ×A → R+. Given an action a ∈ A, if the true parameter is θ ∈ Θ we incur
loss L(θ, a).

• A set of decision rules D ⊆ {δ : X → A}. A decision rule δ specifies which action we take given
observation x ∈ X .

With these in mind, we define our first measure of ‘how bad’ a decision rule is:

Definition 10.1. For a given rule δ ∈ D and parameter θ ∈ Θ, the (frequentist) risk is

R(θ, δ) = Eθ[L(θ, δ(X))] =

∫
X
L(θ, δ(x))f(x, θ) dx.

This is the expected loss assuming the true parameter is θ.

Examples.

• Estimation: δ(x) is an estimator of θ ∈ Rk and L(θ, a) = ||a − θ||2, so that R(θ, δ) =
Eθ[||δ(X)− θ||2].
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• Testing: we test θ ∈ H0 against θ ∈ H1. In this case A = {0, 1} and

L(θ, a) =


1 if θ ∈ H0, a = 1

1 if θ ∈ H1, a = 0,

0 otherwise.

The risk is then just the probability of the wrong decision:

R(θ, δ) =

{
Pθ(δ(X) = 0) if θ ∈ H1,

Pθ(δ(X) = 1) if θ ∈ H0.

These are the Type I/II error probabilities respectively.

10.1.1 Admissibility

Let’s see how we might compare decision rules.

Definition 10.2. We say that δ2 strictly dominates δ1 if

R(θ, δ1) > R(θ, δ2) ∀θ ∈ Θ

and R(θ, δ1) > R(θ, δ2) for at least some θ.

A procedure δ1 is inadmissible if there exists δ2 such that δ2 strictly dominates δ1.

We define admissible to simply mean not inadmissible.

Example. Suppose X ∼ U [0, θ]. Let D = {estimators of the form θ̂(x) = ax} (so this is a family
indexed by a).

Using the quadratic loss, the risk will in general be

R(θ, θ̂) =

∫ ∞
0

(ax− θ)2 · 1

θ
dx = (

a3

3
− a+ 1)θ2

which is minimised at a = 3/2. Thus θ̂(x) = ax is inadmissible for all a 6= 3/2.

So a = 3/2 is a necessary condition for θ̂ to be admissible for quadratic loss; but we have not shown

that θ̂(x) = 3
2x is admissible!

Remark. Note that being admissible is a fairly weak requirement; it is simply the absence of another
property.

Remark. We will later see that some natural estimators are in fact inadmissible (see chapter 11).

10.2 Minimax rules and Bayes rules

We now further explore notions of ‘best possible’ decision rules.

Definition 10.3. A rule δ is a minimax rule if

sup
θ
R(θ, δ) 6 sup

θ
R(θ, δ′) ∀δ′ ∈ D.
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It minimises the maximum risk:

δ∗ = argminδ∈D sup
θ∈Θ

R(θ, δ).

Intuitively, a minimax rule does best in the worst case scenario. This can often still mean poor perfor-
mance on average; see the handwritten notes (lecture 10.2) for some diagrams showing why this might
be the case.

Given a prior belief about the parameter θ, a more natural choice of rule emerges.

Definition 10.4. The Bayes integrated risk for a decision rule δ and a prior π(θ) is

r(π, δ) :=

∫
Θ

R(θ, δ)π(θ) dθ.

A decision rule δ is said to be a Bayes rule w.r.t. π if it minimises the Bayes risk:

r(π, δ) = inf
δ′∈D

r(π, δ′) =: mπ.

In the case that the infimum is not attained, we define the following:

Definition 10.5. Given ε > 0, if a decision rule δε is such that

r(π, δε) < mπ + ε,

then δε is said to be an ε-Bayes rule w.r.t. π.

A rule δ is said to be an extended Bayes rule if for all ε > 0 there is some prior π with respect
to which it is ε-Bayes.

Let’s see another way of looking at Bayes rules.

Definition 10.6. The expected posterior loss of a rule δ w.r.t. a prior π is

Λ(x) =

∫
Θ

L(θ, δ(x))π(θ | x) dθ.

Proposition 10.7. A Bayes rule minimises the expected posterior loss.

Proof. The Bayes risk is

r(π, δ) =

∫
R(θ, δ)π(θ) dθ =

∫ ∫
L(θ, δ(x))f(θ, x)π(θ) dxdθ

=

∫ ∫
L(θ, δ(x))π(θ | x)h(x) dx dθ

=

∫
h(x)

∫
L(θ, δ(x))π(θ | x) dθ dx

=

∫
h(x)Λ(x) dx

so to minimise r(π, δ), for each x pick δ(x) to minimise Λ(x).

Now we turn to a version of admissibility that takes into account our prior:
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Definition 10.8. A rule δ∗ is said to be π-admissible if for all rules δ,

R(θ, δ) 6 R(θ, δ∗) ∀θ ∈ Θ =⇒ π({θ : r(θ, δ) < R(θ, δ∗)}) = 0.

In other words, we now don’t care if there is a rule whose risk is less under some parameter unless that
parameter could actually occur, with positive probability, according to our prior.

Theorem 10.9. A Bayes rule w.r.t. π is π-admissible.

Proof. By contradiction. If a Bayes rule δ∗ is not π-admissible, there is some δ s.t. R(θ, δ) 6
R(θ, δ∗) ∀θ and π(Aδ) > 0, where Aδ := {θ : R(θ, δ) < R(θ, δ∗)}, and so

r(π, δ)− r(π, δ∗) =

∫
Aδ

[R(θ, δ)−R(θ, δ∗)]π(θ) dθ +

∫
Acδ

[R(θ, δ)−R(θ, δ∗)]π(θ) dθ

=

∫
Aδ

[R(θ, δ)−R(θ, δ∗)]π(θ) dθ < 0

(since the integrand is negative). This contradicts that δ∗ is Bayes.

(Note this argument requires a little measure-theoretic justification.)

Proposition 10.10 (Bayes rules and admissibility). Let δπ be a Bayes rule w.r.t. π with finite
Bayes risk. Then

1. If δπ is unique then it is admissible.

2. If θ 7→ R(θ, δ) is continuous for all δ and π has a positive density w.r.t. the Lebesgue measure,
then δπ is admissible.

Proof.

1. If δπ is not admissible then there is some δ such that R(θ, δ) 6 R(θ, δπ) ∀θ ∈ Θ and R(θ, δ) <
R(θ, δπ) for some θ. This implies r(π, δ) 6 r(π, δπ), so δ must also be Bayes, so by uniqueness
δ = δπ, contradicting the definition of δ. So δπ is admissible.

2. As above, if δπ is not admissible then there is some δ such that R(θ, δ) 6 R(θ, δπ) ∀θ ∈ Θ and
Aδ 6= ∅, where Aδ := {θ : R(θ, δ) < R(θ, δπ)}.
Since θ 7→ R(θ, δ) − R(θ, δπ) is continuous, Aδ must contain an open set. So π(Aδ) > 0. A
contradiction!

10.3 Finite decision problems

Definition 10.11. A decision problem is said to be finite when Θ is finite. We write Θ =
(θ1, . . . , θk).

In the case of a finite decision problem, the notions of admissibility, minimax and Bayes rules can be
given geometric interpretations.

Definition 10.12. The risk set S ⊆ Rk is the set of points {(R(θ1, δ), . . . , R(θk, δ)) : δ ∈ D}.

Lemma 10.13. S is a convex set.

Page 44 of 63



Foundations of Statistical Inference 10. Decision Theory

Proof. Let δ1, δ2 ∈ D be two rules. Take α ∈ (0, 1). Then define a randomized rule as follows:

δ′(x) =

{
δ1(x) with prob α,

δ2(x) with prob 1− α.

Then R(θ, δ′) = αR(θ, δ1) + (1−α)R(θ, δ2). So the convex combination is a valid decision rule.

10.3.1 The case k = 2

The two-dimensional case (i.e. there are two possible parameters) is particularly interesting. See the
handwritten notes for some exciting diagrams.

10.4 Relating Bayes to minimax

Theorem 10.14. If δ is a Bayes rule w.r.t. π with r(π, δ) = c and δ0 is a rule such that
maxθ R(θ, δ0) = c, then δ0 is minimax.

Proof. If for some other rule δ′ we have maxθ R(θ, δ′) = c− ε for some ε > 0 (so δ0 is not minimax)
then

r(π, δ′) =

∫
R(θ, δ′)π(θ) dθ

6
∫

(c− ε)π(θ) dθ

= c− ε < r(π, δ)

so δ is not a Bayes rule.

Theorem 10.15. If δ is a Bayes rule w.r.t. π such that R(θ, δ) does not depend on θ, then δ is
minimax.

Proof. Let R(θ, δ) = c ∀θ. Then r(π, δ) =
∫
cπ(θ) dθ = c.

If there exists δ′ with maxθ R(θ, δ′) = c − ε for some ε > 0 (so δ is not minimax) then r(π, δ′) 6
c− ε < c = r(π, δ), giving us our contradiction.

Remark. In other words, the Bayes estimator with constant risk is minimax.

Example (Minimax estimator for quadratic loss.). Suppose X ∼ Bin(n, θ) and π(θ) ∼
Beta(α, β).

The Bayes estimator is θ̂ = α+X
α+β+n (this is the posterior mean). This gives risk

R(θ̂, θ) = Eθ[(θ̂ − θ)2] = MSE(θ̂)

= (Bias(θ̂))2 + Var(θ̂)

=

[
θ − Eθ

(
α+X

α+ β + n

)]2

+ Var

(
α+X

α+ β + n

)

=

[
θ − α+ nθ

α+ β + n

]2

+
nθ(1− θ)

(α+ β + n)2

=
[θ(α+ β)− α]2 + nθ(1− θ)

[α+ β + n]2
.

We can see that if α = β =
√
n/2 then this is constant in θ. Hence the minimax estimator for
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quadratic loss is x+
√
n/2

n+
√
n

.

10.5 Point estimation

In the setting of point estimation (coming up with a best guess for a parameter, as we’ve been doing a
lot in this course) there are three common loss functions:

Definition 10.16. The zero-one loss is of the form L(θ, θ̂) =

{
a if |θ − θ̂| > b,

0 otherwise
where a, b are

positive constants.

The absolute error loss is of the form L(θ, θ̂) = k|θ̂ − θ| where k is a positive constant.

The quadratic loss is of the form L(θ̂, θ) = k(θ̂ − θ)2 where k is a positive constant.

Remark. See the handwritten notes (lecture 10.5) for diagrams of these loss functions.

Let’s see what the Bayes estimate (Bayes rule) is for each of these losses, by minimising the expected
posterior loss.

Proposition 10.17. The Bayes estimate under the:

1. zero-one loss with interval radius b tends to the posterior mode as b→ 0;

2. absolute error loss is the posterior median;

3. quadratic loss is the posterior mean.

Proof.

1. The expected posterior loss is

Λ(x) =

∫
π(θ | x)L(θ, θ̂) dθ

= a

∫ ∞
θ̂+b

π(θ | x) dθ + a

∫ θ̂−b

−∞
π(θ | x) dθ

∝ 1−
∫ θ̂+b

θ̂−b
π(θ | x) dθ.

So the Bayes rule is to choose θ̂(x) to maximise
∫ θ̂+b
θ̂−b π(θ | x) dθ.

If π(θ | x) is unimodal then this θ̂ is the midpoint of the unique interval of length 2b on which
π(θ | x) takes the same value at both ends.

So as b→ 0, θ̂ tends towards the posterior mode.

2. The expected posterior loss is

Λ(x) =

∫ ∞
−∞
|θ̂ − θ|π(θ | x) dθ
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so that

∂

∂θ̂
Λ(x) =

∫ ∞
−∞

∂
∂θ̂
|θ̂ − θ|π(θ | x) dθ =

∫ ∞
−∞

(−1)1θ̂>θπ(θ | x) dθ

=

∫ θ̂

−∞
π(θ | x) dθ −

∫ ∞
θ̂

π(θ | x) dθ

so, setting this to zero, Λ is minimised when∫ θ̂

−∞
π(θ | x) dθ =

∫ ∞
θ̂

π(θ | x) dθ,

i.e. θ̂ is the median of π(θ | x).

3. The expected posterior loss is

Λ(x) = E[(θ̂ − θ)2 | X = x]

= E[(θ̂ − µx + µx − θ)2 | X = x] where µx is the posterior mean

= (θ̂2 − µx)2 + 2(θ̂ − µx)E[θ − µx | X = x] + E[(θ − µx)2 | X = x]

= (θ̂ − µx)2 + Var(θ | X = x).

So Λ is minimised when θ̂ = µx, the posterior mean.
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Chapter 11

The James-Stein Estimator

In this chapter we explore an interesting paradox.

Assume that Xi ∼ N (µi, 1) are mutually independent unit-variance Gaussian random variables, and
write X = (X1, . . . , Xp) and µ = (µ1, . . . , µp). The goal is to estimate µ from a single observation X.

We know the maximum likelihood estimate is µ̂MLE = X, and we have seen that this is the MVUE.

Is this estimate admissible (for, say, quadratic loss)? For p > 3, the answer is no!

Theorem 11.1 (Stein’s Paradox). The James-Stein estimator

µ̂JSE :=

(
1− p− 2∑p

i=1X
2
i

)
X

strictly dominates µ̂MLE for quadratic loss.

(We will prove this shortly.)

Corollary 11.2. If p > 3, µ̂MLE is inadmissible for quadratic loss.

Remark. This is very surprising ! For instance, suppose you take measurements to estimate:

1. The average weight K of a kiwi at Tesco;

2. The average height G of a blade of grass in University Parks;

3. The average speed S of a bike going down Cornmarket Street.

These are totally unrelated quantities; but Stein’s paradox tells us that we get better estimates (on
average) for the vector (K,G, S) by simultaneously using the three measurements!

Let’s see how to prove this.

Lemma 11.3 (Stein’s Lemma). For independent Gaussian random variables X = (X1, . . . , Xp)
with Xi ∼ N (µi, 1) for each i, then for each i and for any bounded differentiable function h,

E[(Xi − µi)h(X)] = E

[
∂h(X)

∂Xi

]
.
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Proof. By the Tower Law,

E[(Xi − µi)h(X)] = E
[
E[(Xi − µi)h(X) | {Xj : j 6= i}]

]
.

Using integration by parts,

E[(Xi − µi)h(X) | {Xj : j 6= i}] =

∫ ∞
−∞

(xi − µi)h(x)e−(xi−µi)2/2 dxi

=
[
−e−(xi−µi)2/2h(x)

]xi=∞
xi=−∞

+

∫ ∞
−∞

∂h(x)

∂xi
e−(xi−µi)2/2 dxi

= 0 + E

[
∂h(X)

∂Xi

| Xj : j 6= i

]

since h is bounded. Applying the Tower Law again gives the result.

Proof of Stein’s Paradox. Consider the family of estimators µ̂JSE =
(

1− a∑
X2
i

)
X indexed by the

parameter a. These are called the James-Stein estimators.

Recalling that µ̂MLE = X, we get

R(µ, µ̂MLE) =

p∑
i=1

E[(µi −Xi)
2] = p

(since Var(Xi) = 1).

On the other hand, writing µ̂i :=

(
1− a∑

j X
2
j

)
Xi,

R(µ, µ̂JSE) =

p∑
i=1

E[(µi − µ̂i)2]

=

p∑
i=1

E[(µi −Xi)
2]− 2aE

[
(Xi − µi)Xi∑

j X
2
j

]
+ a2 E

 X2
i(∑

j X
2
j

)2


 .

Now the first term is just 1, since Var(Xi) = 1, and by Stein’s Lemma,

E

[
(Xi − µi)Xi∑

j X
2
j

]
= E

[
∂

∂Xi

Xi∑
j X

2
j

]
= E


∑
j X

2
j − 2X2

i(∑
j X

2
j

)2

 = E

 1∑
j X

2
j

− 2
X2
i(∑

j X
2
j

)2

 .
Putting this all together, we get

R(µ, µ̂JSE) = p− (2ap− 4a)E

[
1∑
X2
j

]
+ a2 E

[
1∑
X2
j

]

= p− (2a(p− 2)− a2)E

[
1∑
X2
j

]
.

This is minimised at a = p− 2, and is less than p for this value; this concludes the proof.

Remark. The James-Stein estimator shrinks each component of X towards the origin. However, there

is of course nothing special about the origin; a similar estimator µ̂
(µ0)
JSE = µ +

(
1− p−2

||X−µ0||2

)
(X − µ0)

can be defined which shrinks X towards an arbitrary point µ0, and it can easily be shown that this also
strictly dominates µ̂MLE. (See the handwritten notes for the details.)
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Exercise. Show that for some a the estimator X̄1p+
(

1− a
||X−X̄1p||2

)
(X−X̄1p) strictly dominates

µ̂JSE, where 1p = (1, . . . , 1).

Remark. Observe that when ||X − µ0||2 < p − 2, the shinkage factor becomes negative. To avoid this
problem, we can define

µ̂
(µ0)
JSE+ = µ0 +

(
1− p− 2

||X − µ0||2

)+

(X − µ0)

(where x+ denotes the positive part), which strictly dominates µ̂
(µ0)
JSE ).

It is worth noting that neither µ̂
(µ0)
JSE nor µ̂

(µ0)
JSE+ are admissible.

Example (Baseball example). Consider the dataset in fig. 11.1, taken from Young and Smith.
It shows statistics from the 1998 baseball pre-season in the US for 17 top players. Our interest is in
predicting the home run strike rate of each player in the full season.

For each player i, Yi is the number of home runs out of ni times at bat in the pre-season. We
assume that home runs occur according to a binomial distribution, so that player i has probability
pi of hitting a home run each time at bat, independently of other at bats and other players. Thus
Yi ∼ Bin(ni, pi).

Here pi is the true full-season strike rate (and Yi/n is the strike rate in the pre-season); the actual
values of pi as well as the actual number ABi of at bats of each player (in the full season) and the
actual number of home runs HRi are shown in the figure.

So, how might we estimate pi given just the pre-season statistics Yi and ni for each player? Obviously
the näıve estimate is the MLE p̂i = Yi/ni. These give rise to the estimated number of home runs
ĤRi = p̂i · ABi (assuming we know the actual number of at bats, which of course at the time we
wouldn’t have). These values are shown in the figure.

The Stein paradox tells us we may be able to do better.

First transform the data, setting Xi = fni(Yi/ni) where fn(y) := n1/2 sin−1(2y − 1). Then Xi ∼
N (µi, 1) for each i, with µi = fni(pi).

We can then use the James-Stein estimator to estimate the means µi. Using the ‘improved version’
we just encountered, we set

JSi := X̄ +

(
1− p− 3

V

)
(Xi − X̄)

for each i, where X̄ =
∑
Xi/p and V =

∑
(Xi − X̄)2 (here p = 17).

These estimates of the µi are shown in the figure, and transforming back will give us estimates ĤRs
for the number of home runs of each player, which are also shown.

We see that the James-Stein approach gives much better estimates on average! More precisely, the
James-Stein estimator achieves a lower aggrigate risk than the näıve estimator, but allows increased
risk in estimation of individual components.
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Figure 11.1: Data for 17 players in the 1998 baseball pre-season and full season taken from Young and
Smith.
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Chapter 12

Empirical Bayes Methods

We return now to our discussion of Bayes estimators (Bayes rules). While Bayes estimators have desirable
properties (the posterior mean, the Bayes estimator under quadratic loss, is often admissible), they can
be hard to calculate, in particular for the heirarchical models met in chapter 9.

This motivates the empirical Bayes approach.

12.1 Basic setup

Recall that a heirarchical Bayesian model consists of three ‘layers’: the likelihoodX ∼ f(x, θ) parametrised
by θ, the prior θ ∼ π(θ, ψ) parametrised by ψ, and the hyperprior ψ ∼ g(ψ).

Definition 12.1. Empirical Bayes methods adapt the heirarchical Bayesian model by replacing
the hyperparameter vector ψ with a point-estimate ψ̂ derived from the data.

So we now just have the likelihood X ∼ f(x, θ) and the prior θ ∼ ψ̂(θ) = π(θ, ψ̂).

Remark. Empirical Bayes methods can be viewed as an approximation of a full heirarchical Bayes model
that allows us to avoid doing ψ-integrals. One layer of the heirarchy has been ‘chopped off’.

Recall that we met this idea briefly in chapter 9 before heirarchical models were introduced.

The reduced model has posterior
π̂(θ | x) ∝ L(θ, x)π(θ, ψ̂)

and a Bayes estimator θ̂EB can be calculated using π̂(θ | x). So for quadratic loss, we have θ̂EB =∫
θπ̂(θ | x) dθ, the posterior mean.

Remark. In this setting, the Bayes estimator is called an empirical Bayes estimator , or an EB
estimator .

12.2 Choice of point estimate

How can we choose our point estimate ψ̂ of the hyperparameter? We have all the classical frequentist
techniques at our disposal. The two most obvious ways are:

• Use the MLE ψ̂ = argmaxψp(x | ψ) where

p(x | ψ) =

∫
L(θ, x)π(θ, ψ) dθ

is the marginal likelihood.
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• Use the method of moments: choose ψ̂ such that π(θ, ψ̂) has the same mean and variance as the
sample mean and sample variance of the MLEs of the θi.

Example (Meta-analysis of studies of tumors in rodents). The data in fig. 12.1 shows the
number of rats with tumors, Yi, and the total number of rats ni in each of a number of previous
experiments on tumor growth, as well as the results of a new experiment which we are interested in
analysing.

As usual we’ll assume each Yi ∼ Bin(ni, θi) independently, for parameters θi which we want to
estimate. As our prior distribution we assume that θi ∼ Beta(α, β) independently for each i,
where α, β are hyperparameters. This choice of prior is natural as it is conjugate for the binomial
distribution: the posterior distribution, after observing the new experiment (14 rats, 4 with tumors)
will be π(θ | y) = Beta(α+ 4, β + 10).

Using an empirical Bayes approach with the method of moments goes as follows:

1. Compute the MLEs Yi/ni for the previous experiments i = 1, . . . , 70.

2. Compute the sample mean and variance of these MLEs: m = 0.136 and v = 0.0106.

3. Pick α̂, β̂ such that Beta(α̂, β̂) has ‘matched moments’, i.e.

α̂

α̂+ β̂
= m,

α̂β̂

(α̂+ β̂)2(α̂+ β̂ + 1)
= v.

This solves to α̂ = 1.4, β̂ = 8.6.

4. Calculate the Bayes estimate, which for the quadratic loss is the posterior mean. In this case
the posterior is π̂(θ | y) = Beta(5.4, 18.6) so the posterior mean is 0.225

This estimate is less than the maximum-likelihood estimate of θ̂MLE = 4/14 we’d get based solely
on the current experiment, not taking into account past experiments.

Figure 12.1: Data on tumor incidence in historical control groups and current group of rats, from Tarone
1982. The table displays the values yj/nj: (number of rats with tumors)/(total number of rats).

12.3 James-Stein and empirical Bayes

Suppose we have X1, . . . , Xp ∼ N (θi, 1) as in the setup for the James-Stein estimator. Given one
observation xi per parameter θi we wish to estimate the parameters θi.

Proposition 12.2. The James-Stein estimator can be intepreted as an empirical Bayes estimator.

(Specifically, for a = p it’s the EB estimator for quadratic loss when using a mean-zero Gaussian
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prior whose variance is estimated using maximum likelihood.)

Proof. We wish to construct an EB estimator for quadratic loss. There is some freedom of choice of
prior, but we will assume as our prior that θi are drawn independently from a N (0, τ2) distribution.

Given τ , then, we have θi | (xi, τ2) ∼ N
(
xi

τ2

1+τ2 ,
τ2

1+τ2

)
. This can be calculated by completing the

square.

To estimate τ , then, we can compute the marginal likelihood of Xi given τ :

Xi | τ2 ∼ N (0, τ2 + 1) independently for each i.

This is maximised by τ̂2 = 1
p

∑p
j=1(X2

j − 1). (This is from the standard result for the MLE for the

variance of a Gaussian distribution).

So the estimated posterior distribution is θi | xi ∼ N
(
xi

τ̂2

1+τ̂2 ,
τ̂2

1+τ̂2

)
. Thus the Bayes estimator for

quadratic loss, i.e. the posterior mean, is

θ̂EB,i = Xi
τ̂2

1 + τ̂2
= Xi

(
1
p

∑p
j=1X

2
j

)
− 1

1
p

∑p
j=1X

2
j

= Xi

(
1− p∑

X2
j

)
.

This is the James-Stein estimator with a = p.

Remark. This is not the minimum James-Stein estimator (with a = p− 2) but it does strictly dominate
the MLE for all θ. The James-Stein estimator with a = p − 2 can be recovered by using moment
estimators (see Young and Smith section 3.5).

Example. Suppose that Xi ∼ Po(θi) independently for i = 1, . . . , p.

The maximum-likelihood estimate for each θi would be simply xi. Let’s follow roughly the same
empirical Bayes approach as above to find a better estimator (similar to the James-Stein estimator).

As a prior we assume that θi are i.i.d. Exp(λ), so that π(θi | λ) = λe−λθi for each i and λ is a
hyperparameter to be estimated.

The marginal likelihood for λ is, for a single data point i,

p(xi | λ) =

∫ ∞
0

e−θiθxii
xi!

λe−λθi dθi =

(
1

1 + λ

)xi λ

1 + λ
∼ Geom

(
λ

1 + λ

)
.

So given λ the Xi are marginally i.i.d. Geom
(

λ
1+λ

)
with mean λ−1.

So the maximum marginal likelihood estimator is λ̂ = 1
x̄ = n∑

xi
.

Hence our empirical Bayes approximation gives marginal posterior

π̂(θ | x) ∝ L(θ, x)π(θ, λ̂) =

p∏
i=1

e−θiθxii λ̂e−λ̂θi .

We recognise from this expression that θi | xi ∼ Γ(xi + 1, λ̂+ 1) for each i. So the EB estimator is
the approximated posterior mean,

θ̂EB,i =
α

β
=
xi + 1

λ̂+ 1
= x̄

xi + 1

x̄+ 1
= xi

1

x̄+ 1
+ x̄

x̄

x̄+ 1
.
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This has the effect of shrinking the MLE estimates towards the mean x̄.

Remark. We see that the empirical Bayes approach tends to pull the estimates towards the common
mean. This is true in general for models with exchangeable parameters.

Note also that, as mentioned in chapter 9, one drawback of the empirical Bayes approach is that we’re
potentially using the same data twice, leading to overfitting.

12.4 Non-parametric empirical Bayes

So far we have estimated a hyperprior distribution by finding a point estimate for the hyperparameter.
We could instead estimate the hyperprior (or marginal) distribution directly from the data. This is
known as non-parametric empirical Bayes. One such method is illustrated below.

Example. Suppose Yi ∼ Po(θi) independently. Assume that the parameters θi are drawn indepen-
dently from some distribution π whose form we do not know.

The posterior mean is

θ̂i = E[θi | Yi] =

∫
θπ(θ | Yi) dθ

=

∫ (
θYi+1e−θ

Yi!

)
π(θ) dθ∫ (

θYie−θ

Yi!

)
π(θ) dθ

by Bayes’ Theorem

=
(Yi + 1)p(Yi + 1)

p(Yi)

where p(y) is the marginal pmf.

Robbin’s method is then to approximate the marginal pmf p(y) by the actual number of observed
datapoints equal to y. So in this case

θ̂i =
(yi + 1)p̂(yi + 1)

p̂(yi)
=

(yi + 1) · |{j : yj = yi + 1}|
|{j : yj = yi}|

.
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Chapter 13

Bayesian Hypothesis Tests

We close by applying our Bayesian theory to hypothesis testing.

Throughout this chapter we assume X = (X1, . . . , Xn) are i.i.d. random variables with Xi ∼ f(x; θ) for
each i.

13.1 Simple hypotheses

Suppose we wish to test the hypothesis H0 : θ = θ0 against the alternative H1 : θ = θ1.

We’ll use the decision rule δC , where C is some critical region , defined by

δC(x) =

{
H1 if x ∈ C,
H0 otherwise.

We write α = P(reject H0 | H0) and β = P(accept H0 | H1) for the Type I and Type II error
probabilities respectively.

Our choice of loss function will be the obvious one:

L(θ, δC(x)) =

{
a1x∈C if θ = θ0

b1x 6∈C if θ = θ1.

Lemma 13.1. The rule δC has risk R(θ0, δC) = aα for θ0 and R(θ1, δC) = bβ for θ1.

Proof. We have

R(θ0, δC) =

∫
L(θ0, δC(x))f(x, θ0) dx

=

∫
a1x∈Cf(x, θ) dx

= a

∫
x∈C

f(x, θ0) dx

= aα

by definition of α, and the proof for θ1 is indentical.

To calculate the Bayes risk we need a prior π. Let π(θ0) = p0 and π(θ1) = p1 be the prior probabilities
that H0 and H1 hold, respectively.
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Lemma 13.2. The Bayes risk for δC under the prior π is

r(π, δC) = p0aα(C) + p1bβ(C).

Proof. Trivial, by calculating the expected risk.

Remark. Note here that we write α = α(C), β = β(C) to emphasise that α, β depend on (and only on)
our choice of critical region, whereas the other quantities are independent of it.

Definition 13.3. The Bayes test is the rule δC with the critical region C chosen to minimise the
Bayes risk (under the loss function defined above).

How can we find this optimal critical region?

Recall first the following result from frequentist hypothesis testing (we will not use this result but it
helps to clarify how the Bayesian approach is different):

Theorem 13.4 (Neyman-Pearson Lemma). The best test of size α for H0 against H1 is a
likelihood ratio test with critical region

C =

{
x :

f(x, θ1)

f(x, θ0)
> A

}
for some constant A > 0 chosen such that P(X ∈ C | H0) = α.

Proof. Part A statistics.

Remark. By ‘best test’ we mean the test with the highest power. Recall that the power is defined as
1− β and the size as α.

Thus in frequentist statistics we fix the Type I error, α, and this determines the value of A.

It turns out that the critical region that minimises the Bayes risk is of the same form:

Theorem 13.5 (Bayes test for simple hypotheses). The critical region for the Bayes test with
prior π and loss L is

C =

{
x :

f(x, θ1)

f(x, θ0)
> A

}
where A = p0a

p1b
.

Proof. The Bayes test minimises the Bayes risk

p0aα+ p1bβ = p0aP(X ∈ C | H0) + p1bP(X ∈ C ′ | H1)

= p0a

∫
C

f(x, θ0) dx+ p1b

∫
C′
f(x, θ1) dx

= p0a

∫
C

f(x, θ0) dx+ p1b

[
1−

∫
C

f(x, θ1) dx

]
= p1b+

∫
C

[
p0af(x, θ0)− p1bf(x, θ1)

]
dx.

So choose C such that x ∈ C iff p0af(x, θ0)− p1bf(x, θ1) 6 0, i.e.

C =

{
x :

f(x, θ1)

f(x, θ0)
>
p0a

p1b

}
.
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Corollary 13.6. The Bayes test is a likelihood ratio test with A = p0a
p1b

.

Corollary 13.7. Every likelihood ratio test is a Bayes test for some prior probabilities p0, p1.

Example. Suppose X1, . . . , Xn are i.i.d. N (µ, σ2) with σ2 known, and we want to test H0 : µ = µ0

against H1 : µ = µ1, with µ1 > µ0.

The critical region for a likelihood ratio test becomes

C =

{
x ∈ Rn :

f(x, µ0)

f(x, µ1)
> A

}
=

{
x ∈ Rn : x̄ >

σ2 log(A)

n(µ1 − µ0)
+

1

2
(µ0 + µ1)

}
.

For the Bayes test we need A = p0a
p1b

, so we simply substitute into the above to find the critical
region.

As an example, take µ0 = 0, µ1 = 1, σ2 = 1, n = 4, a = 2, b = 1, p0 = 1
4 , p1 = 3

4 . Then

C =

{
x ∈ Rn : x̄ >

1

4
log

(
2

3

)
+

1

2

]
= {x ∈ Rn : x̄ > 0.3999}.

Using that X̄ ∼ N (µ, 1/4), this gives Type I/II error probabilties

α = P

(
X̄ > 0.3999 | µ = 0,

σ2

n
=

1

4

)
= 0.212

and

β = P

(
X̄ < 0.3999 | µ = 1,

σ2

n
=

1

4

)
= 0.115.

The frequentist approach, fixing α = 0.05, would give β = 0.363 (easy to check), so we see that in
the Bayes test α is increased and β decreased relative to the frequentist test.

13.1.1 The case of the 0–1 loss function

In the case that L is the 0–1 loss, so a = b = 1 and

L(θ, δC(x)) =


1 if θ = θ1 and x ∈ C,
1 if θ = θ0 and x 6∈ C,
0 otherwise,

the Bayes test takes a particularly intuitive form.

Definition 13.8. The maximum a posteriori (MAP) test chooses the hypothesis with the
highest posterior probability P(Hi | X = x).

Theorem 13.9. The MAP test is the Bayes test under the 0–1 loss.
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Proof. Exercise.

13.2 Composite hypotheses

Now that we’ve developed the basic theory of Bayes tests, we’re interested in generalising to the case
that our hypotheses involve sets of values.

A general testing problem involves hypothesis

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1

where Θ0 ∩Θ1 = ∅.

Definition 13.10. A hypothesis Hj : θ ∈ Θj is called simple if Θj is a singleton, and is called
composite if Θj is not a singleton.

13.2.1 The case of a simple null hypothesis

Suppose H0 is simple and H1 is composite; write Θ0 = {θ0}. If our prior π for θ is a continuous
distribution (i.e. it has a density) then the prior probability of H0 will always be zero. This is not
desirable!

Instead, we construct a prior as a weighted mixture of a point mass on Θ0 = {θ0} and a prior distribution
π1 on Θ1:

π(θ) =

{
p0 if θ = θ0,

(1− p0)π1(θ) otherwise.

Using differential notation,
π(dθ) = p0δθ0(dθ) + (1− p0)π1(dθ).

Proposition 13.11. Under this mixed prior, the Bayes test for the 0–1 loss (i.e. the MAP test)
rejects H0 iff

f(x, θ0)∫
Θ1
f(x, θ)π1(θ) dθ

<
1− p0

p0
.

Proof. The marginal distribution for X under this prior is

m(x) =

∫
Θ

f(x, θ)π(dθ) = p0f(x, θ0) + (1− p0)

∫
Θ1

f(x, θ1)π1(θ) dθ.

Thus the posterior probability of H0 is

π(H0 | x) = π({θ0} | x) =
p0f(x, θ0)

p0f(x, θ0) + (1− p0)
∫

Θ1
f(x, θ) dθ

.

The Bayes test for the 0–1 loss, i.e. the MAP test, rejects H0 iff π(H0 | x) < π(H1 | x), i.e. iff
π(H0 | x) < 1/2. This occurs iff

2p0f(x, θ0) < p0f(x, θ0) + (1− p0)

∫
Θ1

f(x, θ) dθ

⇐⇒ p0f(x, θ0) < (1− p0)

∫
Θ1

f(x, θ) dθ

⇐⇒ f(x, θ0)∫
Θ1
f(x, θ)π1(θ) dθ

<
1− p0

p0
,

giving the result.
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Remark. The expression f(x,θ0)∫
Θ1

f(x,θ)π1(θ) dθ
here is called the Bayes factor . We’ll meet it soon in more

generality.

Example (Psychokinesis example). In 1987 Schmidt, Jahn and Radin ran an experiment where
a subject with alleged psychokinetic ability tried to ‘influence’ a stream of quantum particles arriving
at a quantum gate. Each particle would upon arrival at the gate either trigger a red light or a green
light; the laws of quantum mechanics suggest a 50/50 ratio, and the subject tried to influence the
particles to go to red.

Let X be the number of particles observed to go to red out of a total of n. We use the model
X ∼ Bin(n, θ) where θ is unknown. In the experiment, n = 104, 490, 000 and the observed value of
X was x = 52263471.

Has the subject influenced the particles?

Framing this as a hypothesis test, the natural choice of hypotheses is

H0 : θ = 1/2, H1 : θ 6= 1/2.

The frequentist p-value is Pθ=1/2(X > x) = 0.0003. This suggests very strong evidence of paranor-
mal ability?

Let’s reframe this as a Bayesian test to see what’s going on. Choose the mixed prior with p0 =
π(H0) = 1/2 and π1 = U [0, 1]. Under this prior, the posterior probability of H0 is

π(H0 | x) = π({1/2} | x) =
p0f(x, 1/2)

p0f(x, 1/2) + (1− p0)
∫ 1

0
f(x, θ) dθ

=

(
n
x

)
2−n(

n
x

)
2−n + 1

n+1

≈ 0.92

in our case. This gives a very different conclusion from the one based on the p-value.

This reflects that we are reasonably sure before conducting the experiment that θ = 1/2 is a more
likely value than any other.

13.2.2 The case of a point composite null hypothesis

Another common scenario is that Θ0 is a proper linear subspace of Θ but is not a singleton. This is
called a point composite hypothesis. This often arises when we have multiple unknown parameters
and our hypotheses involve only some of them.

The following example illustrates how to handle this situation.

Example. Let X1, . . . , Xn be i.i.d. N (µ, σ2) where θ = (µ, σ2) is unknown. We may wish to test
the hypotheses

H0 : µ = 0, H1 : µ 6= 0.

In this case Θ0 = {0} × R+. This is an example of a point composite hypothesis.

To construct a prior for this test we follow the same approach as for a simple hypothesis, creating a
weighted mixture π = p0π0 + (1−p0)π1 of priors π0 on Θ0 and π1 on Θ1. Now, however, we instead
define π0 as δ0 ⊗ πσ where πσ is a prior on R+ for σ. (Previously π0 was just a Dirac distribution.)
As before, π1 has a density, in this case on R× R+.
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The posterior for H0 will then be

π(H0 | x) = π(Θ0 | x) =
p0m0(x)

p0m0(x) + (1− p0)m1(x)

where, writing f(x, µ, σ2) for the likelihood of µ, σ2 having observed x,

m0(x) =

∫ ∞
0

f(x, 0, σ2)πσ(σ) dσ

is the marginal likelihood under H0 and

m1(x) =

∫
R

∫ ∞
0

f(x, µ, σ2)π1(µ, σ2) dσ dµ

is the marginal likelihood under H1.

13.2.3 The general case

In general, for any hypotheses H0, H1, we can construct a mixed prior π = p0π0 + p1π1 (where π0 is a
prior on Θ0 and π1 is a prior on Θ1) and we can write the posterior probability of Θ0 as

π(Θ0 | x) =
p0m0(x)

p0m0(x) + (1− p0)m1(x)

where m0(x) is the marginal likelihood under H0 and m1(x) is the marginal likelihood under H1.

Remark. As we’ve seen, the marginal likelihoods in common cases take the forms:

• mj(x) =
∫

Θj
f(x, θ)π(θ | Hj) dθ in the continuous case,

• mj(x) =
∑
θ∈Θj

f(x, θ)π(θ | Hj) in the discrete case,

• mj(x) = f(x, θ0) in the case of a simple hypothesis.

In this language we can find a general form for Bayesian hypothesis tests.

Definition 13.12. The Bayes factor of H0 over H1 is given by

B0/1(X) =
m0(X)

m1(X)
.

Theorem 13.13. The Bayes test under the 0–1 loss (the MAP test) rejects H0 iff

B0/1(X) <
1− p0

p0
.

Proof. Exercise. Follow the reasoning from the case of a simple null hypothesis.

Remark. A rough guide to interpreting Bayes factors given by Adrian Raftery is as follows:

P(H0 | x) B0/1 2 log(B0/1) evidence for H0

< 0.5 < 1 < 0 negative (supports H1)

0.5 to 0.75 1 to 3 0 to 2 barely worth mentioning

0.75 to 0.92 3 to 12 2 to 5 positive

0.92 to 0.99 12 to 150 5 to 10 strong

> 0.99 > 150 > 10 very strong
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The value 2 log(B0/1) is sometimes reported because it’s on the same scale as the familiar deviance and
likelihood ratio test statistic.

In the psychokinesis example, the Bayes factor is B0/1 = 12, corresponding to positive-to-strong evidence
in favour of H0 (no paranormal ability).

Example. In a quality inspection program components are selected at random from a batch and
tested. Let θ denote the failure probability. Suppose that we want to test the hypotheses

H0 : θ 6 0.2, H1 : θ > 0.2.

Using the prior π(θ) = 30θ(1− θ)4 for 0 < θ < 1, the hypotheses have prior probabilities

p0 = π(H0) = π(θ ∈ Θ0) =

∫ 0.2

0

30θ(1− θ)4 dθ ≈ 0.345

and p1 = π(H1) ≈ 1− 0.345. The priors for θ under each hypothesis are then

π(θ | H0) =
30θ(1− θ)4

p0
, 0 < θ 6 0.2

and

π(θ | H1) =
30θ(1− θ)4

p1
, 0.2 < θ < 1.

Suppose n components are selected for independent testing. Modelling the number of failures X as
X ∼ Bin(n, θ), the marginal likelihood for H0 is

m0(x) =

∫
Θ0

f(x, θ)π(θ | H0) dθ

=

(
n

x

)∫ 0.2

0

θx(1− θ)n−x 30θ(1− θ)4

p0
dθ.

For one batch of size n = 5, the value X = x = 0 is observed. So

m0(x) =

(
5

0

)∫ 0.2

0

30θ(1− θ)9

p0
dθ ≈ 0.185

0.345
= 0.536.

Similarly m1(x) =
(

5
0

) ∫ 1

0.2
30θ(1−θ)9

p1
dθ ≈ 0.134.

So the Bayes factor is B0/1 = m0(x)
m1(x) = 0.536

0.134 = 4 > 1−p0

p0
= 1.89 so the Bayes test does not reject

H0.

Indeed, the overall marginal likelihood is m(x) = m0(x)p0 +m1(x)(1− p0) ≈ 0.273, so the posterior

probabilities for the hypotheses are π(H0 | x) = π(x|H0)p0

m(x) ≈ 0.185
0.273 = 0.678 and π(H1 | x) ≈ 0.322;

we see that H0 indeed maximises the posterior.

The following example shows that Bayes tests, and the Bayes factor, are not defined when the prior is
improper:

Example (Lindley’s Paradox). Let X1, . . . , Xn be i.i.d. N (θ, σ2) random variables, where σ2 is
known. We wish to test the following hypotheses (one composite, one simple):

H0 : θ = 0, H1 : θ 6= 0.

Suppose the prior distribution under H1 is θ | H1 ∼ N (µτ2). The marginal likelihoods in this case
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are

m0(x) = (2πσ2)−n/2 exp

(
− 1

2σ2

∑
x2
i

)
and

m1(x) = (2πσ2)−n/2
∫ ∞
−∞

exp

(
− 1

2σ2

∑
(xi − θ)2

)
· (2πτ2)−1/2 exp

(
− (θ − µ)2

2τ2

)
dθ.

Completing the square and integrating gives

m1 = (2πσ2)−n/2

(
σ2

nτ2 + σ2

)1/2

· exp

[
−1

2

{
n

nτ2 + σ2
(x̄− µ)2 +

1

σ2

∑
(xi − x̄)2

}]
.

So the Bayes factor is

B0/1 =

(
1 +

nτ2

σ2

)1/2

exp

−1

2

{
nx̄2

σ2
− n

nτ2 + σ2
(x̄− µ)2

} .
We see that B0/1 →∞ as τ →∞ for all x. So in the limit that the prior under H1 is diffuse (infinite
variance), then we have overwhelming support for H0 no matter the observed data.

This shows why we cannot allow improper priors for Bayes tests!

The more general phenomenon hinted at here — that the frequentist and Bayesian hypothesis tests
can disagree in certain situations under certain diffuse priors — is called Lindley’s paradox .

13.3 Model selection

We conclude by briefly touching on a Bayesian framework for model selection. Suppose we have k
candidate models M1, . . . ,Mk for our data x. Each model Mi consists of a parametric family fi(x, θi)
for X and a prior πi(θ) for the unknown parameter θi.

We want identify which model is most likely given the data. Suppose we assign to each model a prior
probability Π(Mi); for example 1

k in the case of a uniform prior. Write mi(x) = m(x | Mi) for the
marginal distribution of X under Mi.

In this framework the Bayes factor of Mj over Mi is Bj/i =
m(x|Mj)
m(x|Mi)

, and the posterior probability of

model Mi is

Π(Mi | x) =
Π(Mi)m(x |Mi)∑
j Π(Mj)m(x |Mj)

=

∑
j

Π(Mj)

Π(Mj)
Bj/i

−1

.

So in the case of a uniform prior Π, this is just the inverse of the sum of the Bayes factors.

We can then pick the model that maximises this posterior probability; this is the Bayes test/MAP test.
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