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Abstract

This report is an excursion into the Graph Attention Networks (GATs) of [VCC+17] as well
as several theoretical and empirical extensions to their work. We first examine the ideas from the
original paper and reproduce their experimental results; we then discuss and implement various
other powerful attention-based methods suggested by [VSP+17] and [BAY21]. We next conduct
a theoretical investigation into the expressive power of GATs and propose a novel modification
to the original attention mechanism, which we prove exhibits the powerful kind of attention
mentioned in [BAY21]. Finally, we perform two empirical studies comparing various versions of
the mechanisms we’ve discussed, all implemented from scratch, on a range of well-known graph
datasets.

1 Introduction

Graph-structured data is found abundantly in the real world. From transportation and drug-discovery
to social media and human interactions, graph structures prove to be a powerful tool for representing
dependencies between entities. It is natural, then, to wish to apply the techniques of deep learning,
which have enjoyed great success in a wide range of applications, to graph-structured data. To this
end, Graph Neural Networks (GNNs) were proposed by [SGT+08] as a computational mechanism
which allows deep learning on graph structures. Since then GNNs have flourished into an active area
of research, with many architectures achieving state of the art performance on common datasets.

One drawback of most graph network models, however, is an inability to easily learn different impor-
tance weights between different pairs of graph vertices. Recognising this problem, [VCC+17] propose
Graph Attention Networks (GATs), a class of models which learn attention weights between neighbour-
ing vertices from the feature vectors of those vertices. As with other GNNs, they construct successive
representations of each vertex based on neighbourhood aggregation — the novelty in their mechanism
lies in the way they construct the weights for this representation: by stacking layers in which nodes are
able to attend over their neighborhoods’ features, they implicitly enable specifying different weights to
different nodes in a neighborhood. Their proposed architecture achieves state-of-the-art performance
on several well-known tasks.

There are still a number of drawbacks to the GAT architecture, though, and in this work we take
GAT as a starting point for an exploration of various other attention-based graph learning techniques.
Our main contributions are as follows:

• A full reimplementation of the GAT models introduced in [VCC+17] and reproduction analysis
of their experimental results.

• The implementation and benchmarking of a number of other existing attention mechanisms,
specifically focusing on transformer-inspired architectures [VSP+17, NNP19].

• The proposal (and implementation) of a new modification to the original GAT layer which is
proven to exhibit the powerful dynamic attention from the theoretical framework of [BAY21],

∗All joint-first authorship.
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as well as surpassing GAT on a new artificial dataset designed to illustrate the differences in
expressive power of different attention mechanisms.

• A comparison of various versions of the GAT and GATv2 [BAY21] attention mechanisms on a
wider array of datasets.

• A strengthening of the notions of “static” and “dynamic” attention from [BAY21] into “super-
static” and “super-dynamic” attention. These stronger definitions still apply to GAT and GATv2
respectively, and we argue should replace the old definitions.

We start in Section 2 by motivating and summarising the original ideas from [VCC+17], as well as
comparing the performance of our reimplementations of their models to the empirical results from
the original paper. Section 3 moves on to a discussion of a number of other related attention-based
techniques we test too, providing background on each of the papers inspiring our extensions. In
Section 4 we present our theoretical findings on expressiveness of attention and describe our novel
dynamic-attention mechanism, as well as empirically demonstrating its superiority on a new artificial
dataset. Last, in Section 5 we compare our implementations of the mechanisms from Sections 3 and 4
against our GAT implementation on two key real-world datasets, as well as studying the effect of
various minor variations to GAT and GATv2 [BAY21] across a number of more varying tasks. All of
our implementations are from scratch using the PyTorch deep learning framework.

Rationale for choice. We chose the GAT paper for several reasons. Firstly, attention mechanisms
are powerful computational tools that have proven extremely effective in a variety of situations; dis-
covering attention mechanisms with desirable computational and mathematical properties could lead
to profound improvements on a number of tasks. Secondly, understanding attention mechanisms more
deeply from a theoretical perspective and forming a general framework for their expressive power is still
an open problem; drawing on several fields of mathematics and presenting a chance to establish a firm
foundation for building provably expressive models, we believed we have mathematical backgrounds
well-suited for contributing in this area. Finally, we were drawn to the implementation challenge that
attention mechanisms present: finding the most efficient ways to execute the computations in parallel
while producing readable and extensible code was something we thoroughly enjoyed.

Notation. Throughout this report unless otherwise specified, working over a graph G = (V,E), we
denote the old and new feature vectors of a node v ∈ V as hv ∈ RF ,h′

v ∈ RF ′
respectively, and we

write N(v) for the set of its immediate neighbours (including itself); we use [n] to refer to the set
{1, . . . , n}.

2 Graph Attention Networks

2.1 Background

Most existing graph neural network models can be described within a common framework called
Message-Passing Neural Networks (MPNNs) [GSR+20] where each layer aggregates the neighbour-
hoods of each node to compute the subsequent representation of that node: the feature vector update
has the form

h′
v = combine(hv, aggregate({hu : u ∈ N(v)})) (1)

where combine and aggregate are (possibly layer-dependent) functions specified by the model. Most
common convolutional architectures do not provide a mechanism for learning the dependencies be-
tween different nodes in the graph; the aggregate function, which normally consists of a linear map
followed by some form of sum, weights contribution from the various nodes according to the corre-
sponding edge-weights in the underlying graph (if any weighting is applied at all).

In contrast, the GAT approach learns the weights for each edge, i.e. implicitly learns the importance
and the co-dependence between pairs of nodes. Formally, given a set of node vectors {h1, . . . ,hn} ⊆ RF
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for some F ∈ N, the GAT attention layer utilises a learnable weight matrix W ∈ RF ′×F and attention-
vectors a1,a2 ∈ RF ′

to compute attention weights

αij :=
exp(βij)∑

k∈Ni

exp(βik)
, i, j ∈ [n] (2)

between each pair of nodes, where

βij := LeakyReLU(a⊤1 Whi + a⊤2 Whj). (3)

GAT attention rule1

Here the LeakyReLU has a fixed slope parameter γ ∈ R, which [VCC+17] set to 0.2 (and we follow
suit in our experiments).

Subsequently, the updated feature vector for each node is computed as

h′
i := σ

∑
j∈Ni

αijWhj

 (4)

for some non-linear activation function σ. [VCC+17] found it helpful to leverage several of these
attention “heads” to obtain a multi-head attention mechanism, which usually takes the form

h′
i =

∥∥∥K
k=1

h′
ik, (5)

i.e. K of these heads are stacked together. The aggregation of the heads need not be concatenation;
in particular, concatenation is not sensible in the final layer of a network, so instead an averaging
procedure is used, before applying the activation function τ :

h′
i = τ

(
1

K

K∑
k=1

h′
ik

)
, σ = identity. (6)

This attention mechanism has several advantages which make it a compelling choice as a layer in a
deep neural network:

• Efficiency. Computationally, it is highly efficient as the operation of the self-attention layer
can be parallelised across all heads, within a head across all edges, and the computation of
output features can be parallelised across all nodes. The time complexity of a single GAT layer
attention head is thus O(|V |FF ′ + |E|F ).

• Expressivity. GAT allows for implicitly assigning different importance between nodes in the
same neighbourhood and could also allow different importance in the different directions of an
edge between two nodes. This has the advantage of increased model capacity and potentially
increased interpretability of the model if the computed attention coefficients are observed and
analysed.

• Generalisation. Almost no structure is assumed on the graph. This has several desirable
properties. Firstly, the model can be applied to unseen graphs and hence can be used in inductive
settings. Secondly, the model is capable of handling both directed as well as undirected graphs,
and finally, we are able to impose arbitrarily modify the graph structure before applying the
model, for example to introduce domain-specific knowledge, or to ensure aggregation within a
wider neighbourhood.

• Adaptability. The proposed attention mechanism is computationally flexible, i.e. the under-
lying framework allows for various tweaks of the original model and attention mechanism.

1We have slightly rewritten this expression to facilitate comparison with other attention mechanisms later in the
report.
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2.2 Reimplementation and reproduction

In this section we reimplement from scratch the GAT layers and models from the original paper
[VCC+17] and reproduce their experimental results.

2.2.1 Implementation details

We found it convenient to use the PyTorch deep learning framework for our implementation, along with
PyTorch Geometric for low-level graph data handling; we did not make use of any pre-implemented
models or model components from either package. Specifically, we built two separate versions of our
reimplementation:

1. A version using methods such as batch matrix multiplication and torch.einsum (optimised
Einstein tensor summation) to compute attention in a pseudo-parallel fashion on CPU. In this
version training logic was custom-written in Jupyter notebooks for each experiment.

2. A version using PyTorch Lightning and sparse tensor operations to compute attention in an
accelerated memory-efficient manner on GPU. In this version training logic was automated as
part of the data structure for each model.

Our full code is available at https://github.com/samuelbarrett1234/atml-group-11. The two
versions are equivalent in logic, differing only in efficiency and/or interface. Indeed, we found that
the performance of the two versions was identical in all cases up to randomisation error, as should be
expected. The experimental results in Sections 4.5 and 5.1 are based on the first version and those of
this section and Section 5.2 are based on the second. For this section we implemented the GAT layer
and the subsequent model exactly as they are presented in the paper, in particular paying attention to
closely replicating the model architectures, hyperparameter values and training procedures (including
early-stopping strategies) they used.

2.2.2 Reproduction of experimental results

Our results on the Cora, CiteSeer, PubMed [SNB+08] and PPI [ZL17] datasets evaluated in the
original paper are shown in Table 1. We did not have the computational resources to re-run each
experiment 100 times as in the original paper and calculate accurate variances for our accuracies,
but it should be noted that the accuracies reported on the transductive datasets are all within one
standard deviation of the means reported in the original paper except for the CiteSeer result, which is
about 1.6 standard deviations out. The reason for this could be purely random error or could be due
to subtle differences in the early-stopping strategies used (see the next section). For the PPI dataset,
our score fell slightly short of the reported score from the original paper: in this case we had to stop
our training early (after approximately 1000 epochs) due to computational constraints despite the
validation accuracy continuing to improve, and we believe this explains the difference in result.

Table 1: Experimental performance of our GAT reimplementation on the original datasets. For
comparison, the test scores reported in [VCC+17] were 83.0 ± 0.7%, 72.5 ± 0.7%, 79.0 ± 0.3% and
0.973± 0.002 respectively.

Dataset Task type Validation score Test score

Cora Transductive node classification 80.2% accuracy 83.4% accuracy
CiteSeer Transductive node classification 74.4% accuracy 71.4% accuracy
PubMed Transductive node classification 79.2% accuracy 79.6% accuracy

PPI Inductive node multi-classification 0.908 micro-F1 score 0.942 micro-F1 score

2.2.3 Discussion and criticism

Our experiments replicate the results from results from [VCC+17] to within an acceptable margin
of error, indicating the overall replicability of the paper’s empirical findings. It should be noted,
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however, that the original authors’ code-base and issues raised on their GitHub repository2 show
that they applied different early-stopping strategies to each dataset (and we followed suit); we found
that applying one uniform strategy across all datasets always resulted in poorer performance than
reported on at least some of them. This raises questions about the ease of overfitting on these small-
scale datasets, an issue discussed more in [SMBG18].

3 Alternative attention mechanisms

The idea of learning attention coefficients is not unique to [VCC+17], and we start our extension of
the original paper by discussing various alternatives to the GAT attention mechanism that have been
proposed in the literature.

3.1 GATv2

[BAY21] observe that the original GAT attention mechanism suffers from some inherent limitations.
They introduce the concepts of dynamic and static attention, and prove that GAT’s attention is only
static. Intuitively speaking, static attention forces all nodes to attend mostly to some fixed unique set
of nodes, while dynamic attention allows different nodes to vary their attention according to what’s
most suitable for them. We give the formal definitions and a more in-depth theoretical discussion in
Section 4.

[BAY21] propose a simple modification: to switch the order of operations, applying the LeakyReLU
non-linearity before the final linear transformation instead of after. This essentially turns the attention
mechanism into a multi-layer perceptron (MLP) which thus exhibits desirable function-approximation
properties that the original mechanism did not. Formally, the original attention calculation eq. (3) is
replaced with

βij := a⊤ LeakyReLU(W1hi +W2hj), (7)

GATv2 attention rule

where here a ∈ RF ′
and W1,W2 ∈ RF ′×F are learnable parameters. The authors of [BAY21] prove

that this new attention mechanism is dynamic, and they call it GATv2.

Remark. Note that the new parametrisation in eq. (7) compared to eq. (3) consists of F ′ + 2FF ′

learnable scalar parameters, compared to 2F ′+FF ′ in the original mechanism. This means GATv2
is fundamentally more heavily parametrised than GAT, an observation which makes meaningful
comparison of the two difficult. For this reason, [BAY21] employ weight-sharing in their experiments
by requiringW1 = W2, in order to eliminate increased model complexity as a source of performance
differences between the two.

There are two points of ambiguity in [BAY21], which we explore more in our experiments in Section 5.2:

• Bias vector. The applied a vector bias term inside the LeakyReLU of eq. (7) in at least some
of their experiments, something they allude to in a footnote but do not mention again. As we
discuss in Section 4, the addition if a bias term is actually a non-trivial alteration.

• Weight choice for feature updates. The need to learn two weight matrices W1,W2 leaves
ambiguity over which should be used in the subsequent feature update, eq. (4). There seem to be
three sensible choices: use W1 (the ‘target’ weight matrix), W2 (the ‘source’ weight matrix), or
learn another weight matrix altogether specifically for use in the feature updates. The authors
do not address this question in their work, but it appears from their code that they opt for the
second option, i.e. using W2.

2https://github.com/PetarV-/GAT/issues/12, https://github.com/PetarV-/GAT/issues/14
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3.2 Transformers

The transformer architecture introduced in [VSP+17] quickly produced shockwaves throughout the
field of natural language processing (NLP), and it was soon ported over to other domains such as
music [HVU+18] and computer vision [ADH+21]. While GAT was inspired by the transformer, it
differs in its definition of the attention scores as well as its use of attention masking (early ver-
sions of transformers instead simply prevent positions in the sequence from attending ‘forward’).3

There have been several attempts at porting the transformer more directly to the graph setting
[BAY21, KO20, DB20, RBX+20], often focussing on the challenge of positional embeddings for nodes
(shown to be important to transformers [WTWS19], but with no obvious analogy in the graph world),
e.g. GraphBERT [ZZXS20] or extracting positional embeddings from the eigenvectors of the graph’s
Laplacian matrix [DB20]. There is also a line of work adapting transformers to the notion of hetero-
geneous graphs [YJK+19, HDWS20, DB20], although this is orthogonal to the setting considered in
this report. [RBX+20] developed a self-supervised pretraining approach (independently of [ZZXS20])
to modelling molecular graphs with transformers.

To apply transformer networks to the graph modelling setting, we first describe the multi-headed
self-attention sublayer. Here we take the attention coefficients to be

βij := (Wkhj)
⊤(Wqhi), (8)

Transformer attention rule

where Wk,Wq ∈ RF ′×F are called the key and query matrices respectively, and are learnt by the
model. Then, the attention coefficients are set to −∞ if there is no edge connecting i and j (except
when i = j), and finally the attention weights αij are computed by a softmax over j.

This differs from the architecture from [VSP+17] in two ways. Firstly, we don’t mask ‘autoregressively’
as is typically done in NLP. Instead masking is done according to node neighbourhoods, as is done in
GAT.

Once the attention weights αij have been calculated, the updated value for node i is∑
j

αijWvhj (9)

for a (learnt) value matrix Wv ∈ RF ′×F .

One of the novel ideas of the transformer is to use multiple attention heads, as explained in Section 2.
There is a different learnt key, query and value matrix for each head. The values produced for each
head are concatenated, and are then projected using a final matrix Wo.

4

The main steps in computing multi-headed self-attention can be elegantly summarised in the following
snippet of code, modified from our repository (with neighbourhood masking removed):

1 keys = torch.einsum('ij,mjn->min', node_matrix, Wk)

2 queries = torch.einsum('ij,mjn->min', node_matrix, Wq)

3 values = torch.einsum('ij,mjn->min', node_matrix, Wv)

4 atts = torch.einsum('ikn,imn->ikm', queries, keys)

5 atts = torch.nn.functional.softmax(atts, dim=-1)

6 return torch.einsum('ikl,ilm,imn->kn', atts, values, Wo)

After applying the multi-headed self-attention sublayer, a transformer layer consists of a position-
wise feedforward neural network. In the same manner as in [VSP+17], we use a 2-layer multilayer
perceptron with ReLU activation in the middle.

3An architecture half-way between GAT and the transformer is the set transformer introduced in [LLK+19] which
does no attention masking but is permutation-invariant.

4Note that, in the terminology of GAT, we are using concatenation rather than averaging as our aggregation function.
This is consistent with the way transformers are typically implemented. The node embedding dimension stays the same
between transformer layers because the dimensions are split evenly between the heads. Thus, after concatenation of the
heads at the end, we are back to the input dimension.
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Finally, a transformer model consists of a stack of these transformer layers, alternating between
attention and the feedforward network.

One important component of the transformer not yet discussed are the positional embeddings - that
is, how the model is able to distinguish nodes in different positions which are otherwise equivalent.
In [VSP+17] this is done by a kind of sinusoidal positional embedding, calculated from the word’s
position in the modelled sentence. However graph models have to be permutation-equivariant. We
follow the approach of [DB20] which uses the eigendecomposition of the graph’s Laplacian matrix
to obtain positional embeddings. Specifically, we take the first k eigenvectors with strictly positive
eigenvalue5 ordered by ascending eigenvalue. Then, this forms an n×k matrix, giving a k-dimensional
embedding for each node. This is projected and then added to the node embeddings before the first
layer only, as opposed to in NLP where it is added at every layer.

3.3 Universal transformers

Universal transformers are a slight yet elegant extension of the transformer architecture, introduced in
[DGV+18], which have found recent applications to graph modelling in [NNP19]. Essentially the only
difference is that the transformer layers share the same weights. That is, we take a single transformer
layer, and ‘apply it’ to the input graph a fixed number of times. As explained in [DGV+18], this
creates an inductive bias towards learning iterative functions, which is highly relevant to the kind of
graph modelling we are doing here. We investigated whether this weight-sharing was beneficial, or
not worth the loss in model capacity. To distinguish the universal transformer from the transformer
described in section 3.2, we will refer to the latter henceforth as the “vanilla transformer”.

4 Theoretical results

We move now to investigating in greater depth the dynamic and static attention types mentioned
in Section 3. After giving the formal definitions of static and dynamic attention, we suggest an
alteration which is mathematically stronger. We then propose a simple modification to the original
GAT mechanism and prove in that it exhibits dynamic attention, as well as showing that a slightly
weaker version would not. We introduce an artificial classification task which illustrates the advantages
of dynamic over static attention, and we show that our new mechanism outperforms others empirically
on this task. Finally, we prove and discuss a possible limitation of our new mechanism.

4.1 Background on static and dynamic attention

As touched upon in Section 3, [BAY21] introduce the theoretical notions of static and dynamic at-
tention as a basis for the theoretical study of expressivity of attention mechanisms. Formally, the
definitions they introduce are as follows:

Definition 1 (Static attention). A (possibly infinite) family of scoring functions F ⊆ (Rd×Rd → R)
computes static scoring for a given set of key vectors K = {k1, . . . ,kn} ⊆ Rd and query vectors
Q = {q1, . . . ,qm} ⊆ Rd, if for every f ∈ F there exists a “highest scoring” key jf ∈ [n] such that
for every query i ∈ [m] and key j ∈ [n], j ̸= jf it holds that

f(qi,kjf ) ⩾ f(qi,kj). (10)

We say that a family of attention functions computes static attention given K and Q, if its scoring
function computes static scoring, possibly followed by monotonic normalization such as softmax.

Definition 2 (Dynamic attention). A (possibly infinite) family of scoring functions F ⊆ (Rd×Rd →
R) computes dynamic scoring for a given set of key vectorsK = {k1, . . . ,kn} ⊆ Rd and query vectors

5Recall that graph Laplacians are positive semidefinite symmetric, so all eigenvalues are real and non-negative.
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Q = {q1, . . . ,qm} ⊆ Rd if for any mapping ϕ : [m] → [n] there exists f ∈ F such that for any query
i ∈ [m] and any key j ∈ [n], j ̸= ϕ(i) it holds that

f(qi,kϕ(i)) > f(qi,kj). (11)

We say that a family of attention functions computes dynamic attention for K and Q, if its scoring
function computes dynamic scoring, possibly followed by monotonic normalisation such as softmax.

In practice, this means that static attention mechanisms have an inherent limitation: there is some
node which maximises the attention weights for all the others, meaning all the other ones attend
“mostly” to that node.

4.2 Are these the ‘right’ definitions?

The definitions of static and dynamic attention from Section 4.1 pertain to the model’s ability to learn
to pick a highest-scoring attendee key, for any given query. However, more general than this would
be to look at the model’s ability to learn attention according to an arbitrary permutation of keys:

Definition 3 (Super-static attention). A (possibly infinite) family of scoring functions F ⊆ (Rd ×
Rd → R) computes super-static scoring for a given set of key vectors K = {k1, . . . ,kn} ⊆ Rd and
query vectors Q = {q1, . . . ,qm} ⊆ Rd, if for every f ∈ F there exists a total order ⪯f on [n] such
that for every query i ∈ [m] and keys j1, j2 ∈ [n],

f(qi,kj1) ≤ f(qi,kj2) ⇐⇒ j1 ⪯ j2. (12)

Definition 4 (Super-dynamic attention). A (possibly infinite) family of scoring functions F ⊆
(Rd×Rd → R) computes super-dynamic scoring for a given set of key vectorsK = {k1, . . . ,kn} ⊆ Rd

and query vectors Q = {q1, . . . ,qm} ⊆ Rd, if for every possible assignment of partial orders over
[n] to queries i ∈ [m], denoted by the mapping i 7→⪯i, there exists f ∈ F such that for all queries
i ∈ [m], keys j1, j2 ∈ [n],

f(qi,kj1) ≤ f(qi,kj2) ⇐⇒ j1 ⪯i j2. (13)

Indeed, [BAY21] allude to this, arguing (after after showing that GAT exhibits static attention) that
GAT learns a fixed permutation of keys for any query — in our terms, that GAT is super-static. This
is more restrictive, and therefore a more powerful result, than proving only that GAT learns a fixed
highest-scoring key for any query.

We claim moreover that GATv2 is capable of super-dynamic attention, i.e. GATv2 is actually more
expressive than the GATv2 paper claims:

Theorem 1 (Super-dynamicity of GATv2). Let F be the family of all functions expressible as a
GATv2 attention layer. Then F satisfies Definition 4.

Proof. The proof of this is a slight extension of the proof that GATv2 exhibits dynamic attention,
in Appendix A of [BAY21]. The only difference is the construction of the function g, defined at
finitely-many points before being continuously-extended.

Firstly, observe that any total order on [n] can be embedded in an order-preserving fashion to R,
for example by assigning each integer its ‘index’ in the ordering. The fact that distinct integers can
have the same index in the order is not a problem. Let σ(⪯, i) denote the index of i ∈ [n] in the
total order ⪯, with the minimal element(s) starting at index 0.

Then, defining the following for each i ∈ [m], j ∈ [n],

g(qi ∥ kj) := σ(⪯i, j) (14)
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we continuously extend this to the whole domain R2d. This is possible as we have only prescribed
g at finitely many points. Observe that, crucially, g has the property that

g(qi ∥ kj1) ≤ g(qi ∥ kj2) ⇐⇒ j1 ⪯i j2 (15)

for any query i ∈ [m] and any pair of keys j1, j2 ∈ [n].

Finally, in the same manner as the proof of dynamicity in [BAY21], we appeal to the universal
approximator theorem [HSW89, Cyb89, Fun89, Hor91] applied to a single GATv2 layer to conclude
that there exists an f ∈ F which approximates g with arbitrary precision on a compact set.

Corollary 1.1 (Dynamicity of GATv2). F satisfies Definition 2.

The fact that these stronger versions of static and dynamic attention are still satisfied by GAT and
GATv2 respectively is strong evidence to suggest that we should ‘update’ our definitions of static and
dynamic attention to that of super-static and super-dynamic attention.

4.3 GAT with Dynamic Biases

An even simpler way we propose to correct the static behaviour of GAT is to add a bias term before
applying the LeakyReLU — a modification we call GAT with Dynamic Bias (GATDB). Formally,
GATDB replaces the attention calculation from eq. (3) with

βij := LeakyReLU(a⊤1 Whi + a⊤2 Whj + ξij). (16)

GATDB attention rule

for some scalar biases ξij ∈ R, i, j ∈ [n].

Theorem 2 (Dynamicity of GATDB). Let F be the family of all functions expressible as a GATDB
attention layer. Then F satisfies Definition 2.

Proof. Let ϕ : [n] → [n] be any mapping, and fix a1, a2 and W; we will show that the statement
holds even in this case, i.e. we can still choose the ξij accordingly.

Take M ∈ R such that M > 2max{1, γ} ·max{|a⊤r Whs| : r ∈ {1, 2}, s ∈ [n]} where γ is the slope
parameter of the LeakyReLU; in particular, writing cij := LeakyReLU(a⊤1 Whi + a⊤2 Whj), this
means that M > cij ∀i, j. Then let us construct the biases as follows:

ξij :=

{
2M + 1 if j = ϕ(i),

M otherwise.
(17)

We claim the resulting function f ∈ F satisfies the dynamic condition. Because softmax is strictly
increasing, it is enough to show that the dynamic condition is satisfied for the βij .

Indeed, fix i; by the choice of M and the fact that LeakyReLU is the identity over the positive real
line, we have from eq. (16) that

βiϕ(i) = a⊤1 Whi + a⊤2 Whϕ(i) + 2M + 1. (18)

But then, by construction,

M > 2max{1, γ} ·max{|a⊤r Whs| : r ∈ {1, 2}, s ∈ [n]} ⩾ a⊤2 Whj − a⊤2 Whϕ(i) ∀j (19)

and combining this with eq. (18) gives for all j ̸= ϕ(i) that

βiϕ(i) > a⊤1 Whi + a⊤2 Whj +M + 1 (20)

> a⊤1 Whi + a⊤2 Whj +M = βij , (21)

where the last equality follows once again from the fact that LeakyReLU is the identity over the
positive reals and because a⊤1 Whi + a⊤2 Whj +M > 0 by construction.
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In fact GATDB exhibits super-dynamic attention, as can be seen by choosing the weights ξij to comply
with the desired partial ordering ⪯. We omit the details to comply with the word-limit requirements.

4.4 Node biases

Our initial idea behind adding the bias terms was that in cases where we have some prior knowledge
about the graph and the importance of some individual nodes, we would like to be able to manually
increase the attention that these nodes receive. For example, in the Cora dataset we might know some
papers that have been very influential in their field, and thus their neighbours would be expected to
attend to them more. This could be done by introducing individual bias terms ξi for all nodes i ∈ V .
Then, the attention coefficient between nodes i and j could be written as

βij := LeakyReLU(a⊤1 Whi + a⊤2 Whj + ξj). (22)

Thus, more influential nodes would be expected to have larger bias terms.

Let’s call this mechanism GAT with Node Biases (GATNB). This approach may seem reasonable, but
here we prove that adding node biases in fact keeps the attention static.

Theorem 3 (Staticity of GATNB). Let F be the family of all functions expressible as a GATNB
attention layer. Then F satisfies Definition 1.

Proof. Let G = (V,E) be a graph modeled by a GATNB layer according to eq. (22), and fix the
values of a1, a2, W and (ξi)i∈[n]. Since V is finite, there exists a node jmax for which the value

of a⊤2 Whj + ξj is maximal amongst all nodes in V . Because both LeakyReLU and softmax are
monotonic, it follows that for all nodes i, the attention coefficient will be largest for the node jmax,
i.e. βijmax

⩾ βij for all i, j ∈ V .

Thus jmax is the “highest scoring” key jf required by Definition 1, and so GATNB computes static
attention.

4.5 Performance on an artificial dataset

To demonstrate the practical benefits of the edge biases in GATDB, we consider a ‘toy’ node classifi-
cation problem which illustrates the differing expressive power between static and dynamic attention.

4.5.1 Task design

Consider a dataset consisting of a number of fully-connected graphs, each with 2k nodes for some
k ∈ N. Each node has one of k possible labels and each label is present in exactly 2 nodes; in
particular, the nodes are divided into two groups — those with indives 0 to k − 1 and those with
indices k to 2k − 1 — and each node in the first group has the same label as the corresponding node
in the second group with the same index mod k.

Every node has a 2k-dimensional feature vector: for nodes in the first group, the first half of each
feature vector one-hot encodes its index (which will be less than k) and the second half is filled with
zeros; for nodes in the second group, on the other hand, the first half of each feature vector is filled
with zeros and the second half one-hot encodes the relevant node’s label. The idea is that each node
in first group will have to learn to attend exclusively to its corresponding ‘twin’ in the second group,
which holds the information needed for finding the correct label.

We would expect to see that models which are capable of dynamic attention perform better on this
task. Static attention methods are expected to struggle, because every node will learn to mostly
attend to a some unique common node, which is incorrect in this situation. To be precise, the static
attention itself does not necessarily mean the classifier would have low capacity. This is because
one one hand, the computed attention is only part of the layer — the attention weights are simply
coefficients in a linear combination that gives that subsequent representation — so the layer might

10



still learn a sensible representation if all the other parameters are calibrated properly. On the other
hand, usually we would expect to have more layers before or after the attention layer and that clearly
affects the capacity of the model.

4.5.2 Empirical performance and discussion

We test this theory by running experiments with the three attention mechanisms — GAT, GATv2,
and GATDB — over various realisations of our toy dataset. We train models with exactly one layer
(the corresponding attention layer) on datasets with k = 3, 4, 5, 6, 7, 8 for at most 100 epochs each
time with standard Adam optimiser with learning rate of 0.005. We report the training accuracy
metric — that is, whether the corresponding layer is able to fit the data or not — a clear measure of
the model’s capacity. Our findings are summarised in Figure 1.

Figure 1: Results of the experimentation of different attention layers on the artificial dataset con-
struction of Section 4.5.

Unsurprisingly, the dynamic attention of the flexible GATDB is able to perfectly fit the data every
time. The flexible attention biases are able to adapt to the attentional structure in a powerful way.
The only disadvantage with this approach is that we need to know the number of nodes in advanced,
albeit not necessarily the structure of the graph itself.

The more surprising result is that GAT outperforms GATv2 on this task. Notice that the proof
that GATv2 is dynamic actually relies on an assumption that the representation dimension can be
arbitrarily large, which is not the case here because we want to do classification with this single layer
so we must set the representation dimension to k. Therefore GATv2 loses its asymptotic guarantees
and the order of operations in GAT make it the more powerful approach in this case.
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4.6 Limitations

Adding dynamic biases increases model expressivity substantially, but can cause generalisation issues
in the transductive setting as illustrated by our following claim:

Theorem 4. Consider any undirected transductive graph modelling problem (where we consider
the adjacency matrix to be constructed in the natural way - i.e. symmetric with 1 in where there is
an edge between the corresponding nodes and 0 otherwise). For a GATDB layer ℓ, let ξℓij denote
the dynamic bias from node i to node j in the network. Let k ⩾ 0 and let i be any node which is
distance at least k from any training-set node6. Then, for any GATDB layer ℓ amongst the last k
layers in the network, ξℓij is not a trained parameter, for any j ∈ N(i).

Proof. To show this, we have to show that the partial derivative of the loss function L with respect
to ξℓij is zero, i.e.

∂L

∂ξℓij
= 0.

It suffices to show that, fixing all other parameters in the network, the loss L is constant with
respect to this parameter.

To see this, we first observe that for any k ≥ 0, any node’s embedding in the (k + 1)th last layer
will only affect the final embeddings of nodes at a distance ≤ k from it. This is because, going
backwards through the layers, each layer increases the receptive field of a node by 1 (which is clear
from the fact that nodes can only attend to their neighbours, and that the graph is undirected), so
this claim follows by a simple induction argument.

In order for a bias parameter for a node i to affect the loss L, it must affect the final embedding
of a training node (which are then converted to class probabilities, independently of all other node
embeddings). However, it follows from the above remark that if a node i has distance at least k
from any training node, then the biases ξℓij , for any layer ℓ amongst the last k layers and for any
j ∈ N(i), do not affect the final embeddings of nodes further than distance k from i, so in particular
they do not affect the final embedding of any training node.

Hence varying such ξℓij does not change L, as required.

This theorem means that how we initialise the dynamic biases for certain non-training nodes is more
important than at first glance. Otherwise, the attention distribution at test time will be influenced by
unlearnt random noise from the biases. While this sounds bad, there are some reasons ‘on our side’
which alleviate this limitation:

• Firstly, and most importantly, with weight decay enabled, these biases decay to zero. So, in
effect, at test time these biases do not exist and the model reverts to standard GATv2 attention.

• Secondly, every node is still restricted to attend to its neighbours, and the values being attended
over are still learnt properly. Therefore this noise might be negligible for many applications.

• Finally, we might be able to force the biases to be learnt if we modify the structure of the graph
explicitly. For example, consider the “n-path” adjacency matrix A where Aij = 1 ̸= 0 if and
only if there is a path of length k between nodes i and j. The introduction of explicit structure
can force the biases to influence the subsequent representations of distant nodes and thus make
them learnable.

5 Empirical studies

We perform two orthogonal empirical studies in this section to complement our theoretical discussions.
First, we compare a number of the attention mechanisms we’ve discussed on the Cora and PPI

6Where, by convention, every node is distance 0 from itself.
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datasets; second, we perform a comparison of various versions of GAT and GATv2 on a broader range
of benchmark datasets.

5.1 Study 1: Comparing different attention methods on Cora and PPI

Due to limited computational resources we could not run all of the methods discussed in this report
on the wider array of datasets we consider in the next subsection, so we start by comparing the
transformer- and bias-based attention mechanisms we’ve discussed and introduced respectively in this
report on the Cora and PPI datasets used in the original GAT paper.

Both of these are node classification tasks. The Cora dataset [SNB+08] consists of 2708 papers grouped
into 7 classes, with edge relations representing (symmetrised) citations between papers; the task is
transductive, with a subset of the nodes’ classes available at training and the remaining classes revealed
only for testing. Each node’s feature vector is a binary encoding of the presence/absence of each of
1433 words in the abstract of the paper. On the other hand, the PPI (Protein-Protein Interactions)
dataset [ZL17] consists of a number of distinct graphs, each representing a particular human tissue; in
each graph, nodes represent particular proteins, with features containing information on 50 positional
gene sets, motif gene sets and immunological signatures, and edges represent interactions between
pairs of proteins in cells of the relevant tissue type. Nodes are labelled by 121 gene ontology sets (this
is a multi-label classification problem). The task is inductive, with full access to the graphs selected
for training and a number of graphs withheld for validation and testing purposes.

5.1.1 Experimental setup

We trained the following architectures on these datasets:

• The GAT models from Section 2.2.

• GATv2 models

• Vanilla transformer models

• Universal transformer models

• GATDB models (CORA only)

We closely followed the experimental setup of [VCC+17] where relevant, in particular using the train-
test split from [YCS16] for Cora.

During training, models were trained for fixed number of epochs, and the version of the model which
achieved the best performance on the validation set (where ‘performance’ refers to ‘accuracy’ for
CORA and ‘micro F1 score’ for PPI) would be selected, and its performance on the test set recorded.

GAT and GATDB. For these architectures we tried to match exactly the hyperparameters and
optimisation settings set out in [VCC+17]. We used the 2-layer model mentioned in the paper with the
corresponding dropout and early-stopping procedure. For the two types of layers we simply exchanged
whether GAT or GATDB was used in the bigger architecture. For GATDB we tried to also use a
hyperparameter ε as a multiplier of the node-biases ξij , i.e. so that effectively the biases that get
added are εξij and we experimented with various possible values of ε, running each experiment 5
times to select the best performing one. In the end, the best one was ε = 1 which corresponds to the
original definition of GATDB.

GATv2, Vanilla Transformers and Universal Transformers. For these architectures we per-
formed hyperparameter optimisation to select certain hyperparameter values. Wherever this was
done, it was done using a grid search over a predefined set of values. The selected model was chosen
according to the best validation set accuracy (or micro-F1 score; whichever was applicable) observed
during training. Every model was trained for to a fixed number of epochs: 100 during grid search, and
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then after the best hyperparameters were selected, the model was trained for a further 200 epochs,
with the final model weights being selected according to the same validation set performance.

The two transformer architectures consisted of a linear layer, followed by a stack of transformer
layers, followed by a final linear layer and then the appropriate activation function. This is necessary
to decouple the input/output dimensions of the datasets, which are generally inappropriate to model
at, with the “internal dimension” of the transformers. Moreover, on the CORA dataset only, we
applied dropout annealing to these models: gradually increasing the dropout up to some limit as
training progresses. We found that setting the dropout high initially slowed training, but setting the
dropout too low resulted in overfitting. On the PPI dataset, unlike in [VCC+17], the batch size was
set to 1 during training due to memory issues on the GPU. All of our final hyperparameters are shown
in Table 2.

Table 2: Hyperparameters for Study 1.

Cora PPI

Model Number of
Layers

Hidden
Dimension

Size

Number of
Layers

Hidden
Dimension

Size

GAT 2 64 3 1024
GATv2 2 64 3 1024

Vanilla Transformer 2 64 1 128
Universal Transformer 2 128 2 128

GATDB 2 64 N/A N/A

5.1.2 Results and discussion

The validation and test scores for each of these models on the two datasets are shown in Table 3. As
can be seen, GAT matches (and slightly exceeds) the reported score in [VCC+17], which is 83.0%. It
is the best architecture on this task, which is somewhat to be expected: the Cora dataset is a small
citation network with a few particularly important nodes and a shortage of complex generalisable
relationships to be learnt. This means that the benefits of dynamic attention are arguably unlikely
to be realised on this task: even a few static attention heads can ‘manually’ learn which the most
important nodes to attend to are, and this will transfer well to the test set. We hypothesise that likely
that dynamic attention becomes more important, and more powerful, when training on either:

(a) larger, more complex transductive datasets, where there are both genuine learnable heuristics
for which types of node to attend to more and too many nodes to ‘memorise’ the important
ones, or

(b) inductive datasets, where memorisation of important nodes in the training set does not help
with prediction on unseen graphs.

Indeed, on the PPI dataset, where GAT does not perform as well as claimed in [VCC+17] despite
using the same parameters. In particular it differs from the results of table 1 because the models were
trained for less time in this set of experiments. This was an unfortunate necessity, because certain
other models required hyperparameter grid searches, so we felt it important for all architectures to
train for the same amount of time. As a result, the fact that we aren’t matching the performance of
[VCC+17] here isn’t cause for concern.

GATv2 performs better, perhaps indicating that dynamic attention is required here. For the trans-
formers, the vanilla transformer has a lot of trouble here – we found that it was not able to learn
several layers, so the best model ended up consisting of only a single transformer layer. Of course this
has implications as to the receptive field of each node. Meanwhile, the universal transformer excels.
This is interesting, because the only difference between the two architectures is that the universal
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transformer applies the same layer many times. This suggests the universal transformer has a very
strong inductive bias to learning a single operation which updates a node’s embedding based on its
neighbourhood.

For the transformer models we found it paramount to use only a handful of layers. This is contrary
to NLP where excess of 8 or 16 layers are common.

Table 3: Results for Study 1.

Cora PPI
(Accuracy) (Micro-F1 score)

Model Validation Test Validation Test

GAT 81.8% 83.4% 0.782 0.812
GATv2 81.4% 80.3% 0.879 0.900

Vanilla Transformer 80.8% 78.5% 0.789 0.810
Universal Transformer 80.8% 80.4% 0.900 0.923

GATDB 77.8% 81.4% N/A N/A

5.2 Study 2: A deeper dive into GAT and GATv2

In the next study, we expand on our empirical results from Section 2.2 by comparing several variants
of GAT and GATv2 on a broader range of benchmark graph datasets.

GAT variants. We consider two types of modification to the original GAT attention head: changing
the form of the neighbourhoods each node attends over, and modifying the feature vectors of each node
to include degree information. Starting with the first, we note that the original GAT paper [VCC+17]
mentioned that attention coefficients could be computed over arbitrary attention masks, but that in
their work each node would attend only to its first-order neighbours (including itself); we explore
modifying this attention mask first by attending over second-order neighbours too, and secondly
by attending only over strict first-order neighbours (i.e. excluding the node itself). Separately, we
consider the addition of one-hot-encoded node degrees to each node’s feature vector before applying
the original GAT attention layer; to motivate this it suffices to note that attention methods aim to
learn heuristics about which other nodes might be more important to a given one, and the connectivity
of those nodes may well contain information on this.

The four GAT mechanisms we consider are thus as follows:

(a) GAT (as in previous sections, with nodes attending over their first-order neighbours and them-
selves)

(b) GAT with attention over second-order neighbourhoods (including self-attention)

(c) GAT without self-attention (nodes attend over their first-order neighbours excluding them-
selves)

(d) GAT with node degrees one-hot encoded into the feature vectors (attention is over
first-order self-inclusive neighbours)

GATv2 variants. For our variants of the GATv2 attention mechanism we take inspiration from the
discussion on weight-sharing and biases of Section 3.1. Recall that the authors of [BAY21] used weight-
sharing in their experiments, setting W1 = W2, but that in the general case where this restriction
is relaxed, there was ambiguity over which matrix should be used in the feature update rule eq. (4);
we proposed three possibilities. There was also a question over whether a bias vector should be used
within the LeakyReLU of the attention rule. For this study we compare the following four setups:

(a) GATv2: as in [BAY21], with weight-sharing and a bias term.
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(b) GATv2 with no bias: still with weight-sharing.

(c) GATv2 without weight sharing (source matrix used for feature updates): in this
variant the matrix W2 is used in the equivalent of eq. (4). A bias vector is still included.

(d) GATv2 without weight sharing (separate feature update matrix): in this variant a
third matrix W is learnt separately from W1,W2 for the feature update. Biases are included.

While these variants are variously heavily-parametrised, their comparison is still of interest.

Datasets. We compare the performance of these attention mechanisms on eight transductive node
classification tasks and one graph classification task. For the node classification tasks, in addition
to the Cora, CiteSeer and PubMed datasets used in [VCC+17], we included the Amazon Computers
and Photo datasets and the Coauthor CS and Physics datasets from [SMBG18], larger datasets they
introduced to illustrate the varying performance of different models across different tasks. We also
included the original full version of the Cora dataset from [BG17], which we call CoraFull. Finally, we
evaluated our models on the graph classification dataset ogbg-molhiv from Stanford’s Open Graph
Benchmark [HFZ+20], a large dataset of graph representations of molecules.7

5.2.1 Experimental setup

In all cases, we used the architecture of the original GAT model for Cora in [VCC+17]: 2 attention
layers, with 8 and 1 heads respectively, and 8-dimensional hidden features (before concatenation),
separated by ELU non-linearities. The same training method was also applied, i.e. cross-entropy loss
minimisation using the Adam optimizer with a learning rate of 0.005 and ℓ2-regularisation constant
0.0005, with p = 0.6 dropout on every node feature and attention coefficient and early-stopping on
the validation loss and score together with a patience of 100 epochs, restoring the weights achieving
the lowest validation loss. We additionally applied a training cutoff of 2000 epochs.

For the graph classification tasks, latent node representations were in all cases globally mean-pooled
and then fed to a 2-layer MLP with size-8 hidden layer and a ReLU non-linearity.

Some of the datasets used (CoraFull, Photo, Computers, CompSci, Physics) do not have standard
train-val-test splits in the literature; for these we followed the methodology of [SMBG18] and used
fixed random splits with 20 nodes of each class in the training set and 500 and 100 arbitrary nodes
respectively in the validation and test sets.

5.2.2 Results and discussion

The test scores of each model on the nine datasets are shown in Table 4. In some cases we were unable
to complete the experiments due to memory constraints.

Table 4: Test scores for Study 2. Failures to run an experiment due to memory shortage are
represented by ‘OoM’.

Model Cora CiteSeer PubMed CoraFull Photo Computers CompSci Physics Molhiv

GAT (a) 82.9% 70.4% 77.8% 19.0% 86.6% 75.2% 90.0% 92.4% 56.3 auc
GAT (b) 79.3% 71.0% OoM OoM OoM OoM OoM OoM OoM
GAT (c) 81.4% 67.9% 77.3% 20.6% 85.0% 73.2% 88.8% 91.6% 64.0 auc
GAT (d) 76.6% 61.5% 64.1% 33.6% 77.0% 71.0% 83.4% OoM 69.2 auc

GATv2 (a) 84.0% 70.5% 78.3% 28.6% 87.4% 62.8% 91.4% 92.4% 67.7 auc
GATv2 (b) 82.5% 70.7% 78.0% 27.4% 86.2% 73.4% 91.4% 91.8% 67.9 auc
GATv2 (c) 82.9% 71.0% 77.8% 30.8% 86.6% 59.4% 90.8% 92.2% 69.5 auc
GATv2 (d) 84.0% 70.8% 78.4% 28.6% 85.8% 74.2% 90.4% OoM 60.9 auc

For the GAT models, the original version performs best on almost all datasets. For the variants
attending over different neighbourhoods, this is likely due to the expressivity benefits of self-attention

7Our first choice would have been to work with the large node classification tasks from OGB, but we did not have
the compute available to do so.
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and the lost structural information when attending over more than a node’s immediate neighbours
respectively; for the version with added node degree encodings this is somewhat surprising, and
potentially indicates overfitting to the training set (likely not only due to the increased ease of learning
relationships involving node degrees but also the higher number of weight parameters). Interestingly,
the exceptions to this observation are on the CoraFull and ogbg-molhiv datasets, where the node-
degree encoding version outperforms all others. While this could be due to a genuine benefit to
learning attention heuristics based on node degrees on these datasets, there are many other factors
that could be at play.8

For the GATv2 models, we make the following observations:

• In almost all cases removing biases appears to be bad. The major exception is on the Computers
dataset, but this may be due to randomisation error.

• There was no consitent response to removing weight-sharing or adding a separate, learnable
feature update matrix. This may well be due to the small size of the datasets as well as our
inability to remove randomisation error.

A general observation is that the differences between the attention models we tried were smaller and
more unpredictable than might be expected. While the results of this study do show that the dynamic
attention of GATv2 is generally beneficial, we would hope to see this much more drastically, as well
as more pronounced differences between our model variations, when training on larger, more modern
graph datasets (such as the OGB node classification datasets) which we did not have the compute
power to work with.

6 Conclusion and future work

One interesting direction of future work is to investigate problems that are inherently not solvable by
either static or dynamic attention mechanisms. For example, a situation in which the edges that need
to be paid attention on change according to the structure of the graph, instead of being fixed for the
task (as the map ϕ in our proofs suggests) might be such problems. In those situations it might make
sense to come up with a framework to better distinguish the representational capabilities of different
attention layers, perhaps taking into account the the full ordering of the attention weights or the full
subsequent representation of the nodes.

Furthermore, it might be useful to investigate more thoroughly what the significance of changing the
adjacency matrix that the models operate on is. Theoretical results that can establish how various
transformations might affect learning and expressiveness would help us design better tasks as well as
better algorithms.
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